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Abstract: Optimization problems lead to solving non-linear equations for calculating the value of a parameter, 

that is the root of the equation. Numerical iterative techniques are frequently used to find roots of an equation 

when analytic solution is not available. Nascent hybrid techniques to find roots of an equation is new to the 

fundamental problem in diverse fields. Recently, there have been some attempts to design hybrid algorithms for 

efficient solutions. Here we strive for a new hybrid algorithm which is an intuitive approach to hybridization. In 

this paper, we design and implement two new algorithms: (1) a new Quadsection algorithm extending the 

Trisection algorithm, (2) a hybrid algorithm, Hybrid 4, that is more efficient than the existing hybrid algorithms. 

Hybrid 4 algorithm is a blend of Quadsection algorithm and Regula Falsi algorithm. The implementation results 

validate that the new algorithm, Hybrid4, surpasses the efficiency of existing hybrid algorithms Hybrid 1, 

Hybrid 2, and Hybrid 3 algorithms. This paper contributes an essential hybrid algorithm to the repertoire of 

hybrid root finding algorithms.  

Keywords: Regula Falsi, Newton-Raphson, Bisection, Trisection, Quadsection, Hybrid Algorithm. 

 

I. INTRODUCTION 
Numerical iterative techniques are used to find roots of an equation when analytic solution is not 

available [Chapra, Traub]. Hybrid algorithm is a new concept to iterative solutions. Envisioning hybrid 

techniques to find roots of an equation is an inspiring technique to solve the fundamental problem in diverse 

fields.  Recently, there have been three hybrid algorithms designing efficient solutions. Here we strive for a new 

hybrid algorithm which is a more intuitive approach to hybridization. Mostly optimization problems lead to 

solving non-linear equations for optimizing calculation of the value of a parameter, that is the root of the 

equation. We design and implement a new algorithm Hybrid4 that is more efficient hybrid of Quadsection and 

False Position methods. The implementation results validate that the new algorithm surpasses the existing 

hybrid algorithms. Thus, we contribute an essential hybrid algorithm to the repertoire of root finding algorithms.  

Finding the roots of an equation is a fundamental problem in diverse fields in physical and social 

sciences including Computer Science, Engineering (Biological, Civil, Electrical, Mechanical), and Social 

Sciences (Psychology, Economics, Businesses, Stock Analysis) etc. They look for the optimal solution to the 

recurring non-linear problems.  The problems such as minimization, Target Shooting, Orbital Motion, Plenary 

Motion, Social Sciences, Financial Market Stock prediction analysis etc, lend themselves to finding roots of 

non-linear functional equations [Calhoun], [Thinzar]. There is thorough study by Sapna and Mohan in the 

financial sector away from mathematics [Sapna]. 

There are classical root-finding algorithms: Bisection, False Position, Newton-Raphson, Secant, methods 

for finding the roots of an equation f(x) = 0. Every text book on Numerical Techniques has details of these 

methods [Chapra,Traub].  Even though classical methods have been developed and used for decades, yet 

enhancements are progressively made to improve the performance of these methods [Sabh], [Badr], [Thota].  

Recently papers are making a ahead way on seeking better performing methods. In response, the better 

algorithms that are hybrid of classical methods Bisection, Trisection, with False Position, Newton Raphson 

methods been developed, namely Hybrid1 [Sabh], Hybrid 2 [Badr], and Hybrid 3 [Thota]. Inspired by these 

three algorithms, we have crafted a new proficient algorithm, Hybrid4, that isa blend of Quadsection and Regula 

Falsi algorithms. This blended algorithm is comparatively better than Hybrid1, Hybrid2, and Hybrid3 with 

respectto computational efficiency, solution accuracy (less error) and iteration count required to terminate 

within the specified error tolerance. This algorithm, Hybrid4, further optimizes these algorithms one step 

furtherby eliminating some of the computing time and increasing the efficiency of the algorithm.   

The paper is organized as follows.  Section II is brief description of classical methods Bisection, Regula 

Falsi, Newton-Raphson, Secant; their strengths and pitfalls. In addition, Trisection and new Quadsection 

algorithms are included. Section III describes hybrid algorithms and new algorithm, Hybrid4, that blends 

Quadsection and False position  algorithms. Section IV presents experimental results simulating the 

performance of new algorithm Hybrid4 and validating it by comparing its performance with the previous hybrid 

algorithms. Section V is conclusion.  
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II. RELATED BACKGROUND 
The classical algorithms Bisection, False Position, Newton-Raphson, Secant methods are readily found in 

any text book in detail and iterated in most articles [Chapra].  We take close look at the bisection algorithm. 

 

Bisection Method Bisection algorithm states that “If f is continuous on a closed interval [a, b] and f is of 

opposite signs at the end points, i.e. f(a)f(b) < 0, then there is a root in the open interval (a, b).” 

Standard algorithm implementation expects that f(a)fb) < 0 to begin with. Because, f(a)f(b)=0 in the 

following, it will fail to proceed on this root finding problem: ” x
2
-x-2=0 on interval [2,4], or [0, 2], or [-2,-1] 

or[-3,-1]. A robust bisection algorithm first confirms that f(a)f(b) < 0 before proceeding to iterate. For example, 

for  f(x) = (x-1)*(x-2)*(x-3) on the interval [1,3], the original version of algorithm will not start, but will 

succceed on [a,b] only when a,b are not 1,2,3. 

In order to be successful on any interval including special cases, we reconsider the wording in this 

theorem and reformulate this theorem to include closed interval all the way.“If f is continuous on a closed 

interval [a, b] and f is not of same sign at the end points, i.e. f(a)f(b) <= 0, then there is a root in the closed 

interval [a, b].”The Bisection algorithm is generalized from “f(a)f(b) < 0” to “f(a)f(b ≤ 0” to include the interval 

boundary also in definition. For example, the equation x
2
-x-2=0 may show up in some applications with an 

interval like [2,4], [0, 2]. Though, it may look simple but if f(a)f(b) = 0, then a or b must be a root, but we still 

want to know which one of a and b? 

For approximate solutions using iterative methods, we have some idea about where the root may be. We 

should have initial guess as close to the location of root as far as possible. That is, we provide a start point or a 

guess or initial bracketing interval to the algorithm to iterate in search for the true approximate value of actual 

root, within some acceptable tolerance. 

 

 

 

 

 

 

 

 

 

 

Figure 1. With enhanced version of Bisection on [1,3], it determines a root, at x=2 in one iteration. 

 

 Table 1 Function f(x) = (x-1).*(x-2).*(x-3) 

  Max Iterations = 40 Error tolerance = 0.000000000001 

   Method      Interval        Root                        Error               Iterations                TimeCPU 

Bisection    [1,3]   2.000000000000 0.000000000000           1                  0.003404917000 

With enhanced version of Bisection on [1,3], it findsa root, at x=2 in one iteration. 

 

Since the Bisection, Regula Falsi, and Newton Raphson methods are readily available in the literature, 

their standalone derivations are skipped in this background section. However, for the sake of completeness, 

these algorithms are delegated to an appendix in section VI for reference.   

To enhance the performance of Bisection method, Bader et.al [Badr] designed a Trisection method that 

supersedes Bisection method in finding an approximate root.  Trisection method reduces the number of 

iterations performed, computation time, and error of approximation at a small cost on number of function 

computations. It inspired us to enhance the Trisection algorithm to a Quadsection algorithm at no additional 

compute cost and is at par with Trisection algorithm in computation CPU time, and error in approximate root, 

but Quadsection requires fewer number of iterations, see examples in this section. These algorithms are blended 

with False Position and Newton-Raphson methods to construct hybrid algorithms. The effectiveness and 

efficacy of root approximation is measured by number of iterations in root calculation and the approximation 

accuracy of the root at the termination of algorithms. The heuristics  metrics for measuring error,  the number 

iterations and stopping criteria are elaborated here first. 
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Heuristics for comparing algorithms 

2.1 Metric for Approximation Error Measurement 

There are various ways to measure an error in approximate root of an equations, f(x)=0, at successive 

iterations to continue to a relatively more accurate approximation to the actual root. At iteration n, to determine 

rn for which f(rn)≅ 0, we proceed to analyze as follows. 

The iterated root approximation error can be 

RelativeRootError =   
𝑟𝑛  − 𝑟𝑛−1

𝑟𝑛
  

or 

AbsoluteRootError =   𝑟𝑛 − 𝑟𝑛−1  
 

Since a root can be zero, in order to avoid division by small numbers, it is preferable to use absolute error 

 𝑟𝑛 − 𝑟𝑛−1 for convergence test. Another reason for this is that if rn = 2
-n

, then 
𝑟𝑛  − 𝑟𝑛−1

𝑟𝑛
 is always 1, it can never 

be less than 1, so the root-error tolerance test cannot be satisfied effectively, this test does not work. Since 

function value is expected to be zero at the root, an alternate cognitively more appealing error test is to use f(rn)  

for error consideration instead of rn. There are three versions for this concept, for comparison criteria, they are 

RelativeValueError = 
𝑓 𝑟𝑛  – 𝑓 𝑟𝑛−1 

𝑓 𝑟𝑛  
  

or 

AbsoluteVlaueError =    𝑓(𝑟𝑛 )  −  𝑓(𝑟𝑛−1)  
or 

TrueValueError =      𝑓(𝑟𝑛 )  
 

Since f(rn) is to be close to zero near the root, in order to avoid divide by small numbers, we discard 

using  
𝑓(𝑟𝑛 ) − 𝑓(𝑟𝑛−1)

𝑓(𝑟𝑛 )
  . Further,  since  𝑓(𝑟𝑛 )  −  𝑓(𝑟𝑛−1) can be  close to zero without |f(rn)| being close to zero, 

we discard using  𝑓(𝑟𝑛 )  −  𝑓(𝑟𝑛−1) also in favor of using only 𝑓(𝑟𝑛 ) , trueValue error. For example, f(rn)= (n-

1)/n is such an example.  We avoid using the first two criteria for this reason and exploit the last one,  𝑓(𝑟𝑛 ) . 
Now we are left with two options 𝑟𝑛 − 𝑟𝑛−1 and  𝑓(𝑟𝑛 ) to consider forerror analysis. Again,rnand  rn-1 can be 

closer to each other without f(rn) being closer to zero. For example rn= 1 +1/n, f(rn) = rn .Between the options 

 𝑟𝑛 − 𝑟𝑛−1  and  𝑓(𝑟𝑛 ) , we find that 𝑓(𝑟𝑛 )  is the only reliable metric for analyzing the approximation error. 

Hence, we use, 𝑓(𝑟𝑛 ) , as the criteria for for comparing with tolerance error analysis for all the methods 

uniformly. 

 

2.2 Metric for Iterations Stopping Criteria, Halting Condition 

Stopping criteria plays a major role in simulations. The iteration termination (stopping) criteria for False 

Position method is different from Bisection method. Tradeoff between accuracy and efficiency is accuracy of 

the outcome.  In order to obtain n significant digit accuracy, let∈𝑠 be stopping error and let∈𝑎  be the 

approximation error at any iteration.  If∈𝑎<∈𝑠, the algorithm stops iterations.  With∈𝑠= 5/10
n-1

, we have n 

significant digit accuracy in the outcome [Chapra].   The bisection algorithm is trivial [Sabh], Trisection and 

Quadsection algorithms are described in Section III. 

Here we describe two enhancements to bisection algorithm. Trisection algorithm [Badr] and Quadsection 

[section III] algorithm, each algorithm has four comparison tests and seven function evaluation references. The 

Quadsection algorithm uses the same amount of computation resources as Trisection algorithm. 

But the number of iterations bn (Bisection),tn (Trisection), qn (Quadsection) required by the Bisection, 

Trisection, and Quadsection algorithms on [a,b] with stopping tolerance eps are 

bn =log{(b-a)/tol}  tn=(0.63) log{(b-a)/tol}  qn= (0.5) log{(b-a)/tol}. 

Trisection algorithm takes 37% fewer iterations than Bisection algorithm to converge within the desired 

tolerance. 

Quadesection algorithm takes 13% fewer iterations than Trisection algorithm to converge within the desired 

tolerance. In addition, as observed below in both Trisection and Quadsectionalgorithms, in each iteration, there 

is no change in the computation time: seven references to function evaluation and four references to compare 

test. 

 

2.3 How to determine that the proposed algorithm performs better than the existing related algorithms? 

This is an experimental science. The methods are numerical and iterative, not analytic solutions.  A 

method may perform well in one case, and fail miserably in another case, see examples below. No one method 

outperforms all other methods all the time on all the intervals of definition [Moazzam].  
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There is no easy way to declare that an algorithm superior to other exiting algorithms. There are several 

factors that must be taken into consideration for distinguishing between the competing algorithms for a root 

finding problem. 

Smart way is to represent new algorithm as to how the proposed algorithm differs from the other 

algorithms. To emphasize the new idea, it is also desirable that the new solution be applicable to a larger 

spectrum, devoid of incomplete domain. A simple customized example does not give a quantitative or 

qualitative view. We need to check the performance and applicability of the proposed approach in a broader 

scope. To comprehend this further, let us take the following example. 

For example, the following problem shows that Trisection algorithm outperforms the other algorithms, 

see Table2 [Bader], [Thota], it gets the correct root in one iteration whereas other cited algorithms take more 

iterative steps, and more CPU time as well. One can infer from this example that the Trisection algorithm 2 and 

3 work well and are superior to other algorithms. Of course, it is when input test function is x^2 - x – 

2andinterval is [1,4]. 

 

Table 2 In this example, algorithm termination upper bound is 40 for iterations and upto 10 decimal digits for 

approximation in the acceptable root. 

Function  f(x) = x^2 - x - 2,   

           Method              Interval      Root               Error  Iterations   TimeCPU 

Hybrid1: Bisection-FalsePos   [1,4]   2.000000000000 0.000000000000     2 0.008360458000 

Hybrid2: Trisection-FalsePos   [1,4]   2.000000000000 0.000000000000     1 0.005007083000 

Hybrid3: Trisection-NewtonRaph [1,4]   2.000000000000 0.000000000000     1 0.004695708000 

Hybrid4: Quadsection-FalsePos  [1,4]   1.999999999991 0.000000000026     5 0.010161750000 

 

Now, consider the same function, and same four test algorithms. The initial input interval is changed to 

[1,3] or [1,5], the tables 3, and 4 indicate that the inference from Table 2 does not hold good, .tables are turned, 

see Tables 3,4. Here algorithm 4 solves the same problem in one iteration and uses the lowest amount of CPU 

time. Again, from this example, it is unfair to declare that the algorithm 4 outperforms Algorithms 1, 2, 3. 

 

Table 3  Function  f(x) = x^2 - x - 2,   

           Method              Interval      Root               Error  Iterations  TimeCPU 

Hybrid1: Bisection-FalsePos   [1,3]   2.000000000000 0.000000000000     1 0.003889167000 

Hybrid2: Trisection-FalsePos   [1,3]   1.999999999998 0.000000000006     6 0.009600083000 

Hybrid3: Trisection-NewtonRaph [1,3]   2.000000000005 0.000000000014    11 0.015903959000 

Hybrid4: Quadsection-FalsePos  [1,3]   2.000000000000 0.000000000000     1 0.006929209000 

 

Table 4 Function  f(x) = x^2 - x - 2,   

           Method              Interval Root             Error Iterations  TimeCPU 

Hybrid1: Bisection-FalsePos   [1,5]   2.000000000000 0.000000000000     6 0.022261500000 

Hybrid2: Trisection-FalsePos   [1,5]   1.999999999993 0.000000000022     6 0.010815083000 

Hybrid3: Trisection-NewtonRaph [1,5]   2.000000000005 0.000000000015    12 0.052815125000 

Hybrid4: Quadsection-FalsePos  [1,5]   2.000000000000 0.000000000000     1 0.003457208000 

 

We have seen that in one case algorithms 2, 3 and in the other two cases algorithms 1, 4 come out ahead 

because they solve the problem in one iteration and use the lowest CPU time. The dilemma is which algorithm 

will work satisfactorily on the average in the majority of cases, if not, all the cases. We have to consider not 

only this function but other functions as well, not one interval, but other related intervals as well. Let us first see 

the next example, Tables 5,6,7,8,9 where none of these four algorithms succeed in finding the approximation in 

one iteration. We used different functions and different intervals for these examples in Tables 5,6,7,8,9.In all 

these examples, the algorithm 4 has the lowest number of iterations and lowest amount of CPU time. We have 

tested on number other examples as well to validate the same phenomena. The following examples use different 

functions and different initial intervals[1, 6], [1,7], [1, 8],even  [0,1]as well to make a intuitive heuristic that 

algorithm 4 may be more efficient than the others. In all the ensuing examples in this paper, algorithm halting 

upper bound is 40 for iterations and upto 10 decimal digits for approximation in the acceptable root. 
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Table 5. Function  f(x) = 0.986*x.^3 -5.181* x.^2 +9.067*x-5.289 

           Method                  Interval      Root               Error    Iterations         TimeCPU 

Hybrid1: Bisection-FalsePos   [1,6]   1.929846242840 0.000000000001     10       0.005306959000 

Hybrid2: Trisection-FalsePos   [1,6]   1.929846242844 0.000000000000       9       0.004571250000 

Hybrid3: Trisection-NewtonRaph [1,6]   1.929846242850 0.000000000000       11       -0.017164083000 

Hybrid4: Quadsection-FalsePos  [1,6]   1.929846242848 0.000000000000        7       0.005307125000 

 

Table 6. Function  f(x) = x^2 - x - 2 

           Method              Interval  Root               Error           Iterations         TimeCPU 

Hybrid1: Bisection-FalsePos   [1,7]   2.000000000000 0.000000000000      9           0.033662625000 

Hybrid2: Trisection-FalsePos   [1,7]   2.000000000000 0.000000000000      7           0.013277458000 

Hybrid3: Trisection-NewtonRaph [1,7]   2.000000000000 0.000000000001     13          0.020348459000 

Hybrid4: Quadsection-FalsePos  [1,7]   2.000000000000 0.000000000000      6          0.009984417000 

 

Table 7. Function  f(x) = x^2  - 2 

           Method              Interval      Root               Error       Iterations           TimeCPU 

Hybrid1: Bisection-FalsePos   [1,8]   1.414213562373 0.000000000001      10          0.003816208000 

Hybrid2: Trisection-FalsePos   [1,8]   1.414213562373 0.000000000001       7          0.002297375000 

Hybrid3: Trisection-NewtonRaph [1,8]   1.414213562373 0.000000000000      13          0.007534041000 

Hybrid4: Quadsection-FalsePos  [1,8]   1.414213562373 0.000000000001       6          0.001220875000 

 

Table 8. Function  f(x) = x-exp(-x) 

           Method              Interval      Root               Error   Iterations              TimeCPU 

Hybrid1: Bisection-FalsePos   [0,1]   0.567143290410 0.000000000001      5             0.027407458000 

Hybrid2: Trisection-FalsePos   [0,1]   0.567143290410 0.000000000000      6             0.012605625000 

Hybrid3: Trisection-NewtonRaph [0,1]   0.567143290409 0.000000000001     11             0.027166625000 

Hybrid4: Quadsection-FalsePos  [0,1]   0.567143290410 0.000000000000      5             0.011773583000 

 

Table 9. Function  f(x) = x-cos(x) 

           Method              Interval      Root               Error    Iterations             TimeCPU 

Hybrid1: Bisection-FalsePos   [0,1]   0.739085133215 0.000000000000      7                  0.015696125000 

Hybrid2: Trisection-FalsePos   [0,1]   0.739085133215 0.000000000000      6                 0.010849875000 

Hybrid3: Trisection-NewtonRaph [0,1]   0.739085133215 0.000000000001     11                 0.019732500000 

Hybrid4: Quadsection-FalsePos  [0,1]   0.739085133215 0.000000000000      4                 0.015507833000 

 

2.4Algorithms 

2.4.1 Bisection, Regula Falsi, Newton algorithm 

These algorithms are unbiquous standard [appendix section VI]. We will use Bisection and Regula 

Falsi methods for comparison analysis of hybrid algorithms. There are multiple reasons for neglecting 

Newton Raphson from this analysis: (a) it requires that function be differentiable, (2) it depends heavily 

on the start point, (3) iterated approximations are not bracketed, (4) it fails if start point is not close to the 

root. Also False Position method does not fit well in the category of Bisection, Triscetion and 

Quadsection, we will first compare these three algorithms. 

 

2.4.2 Trisection Algorithm [Badr]. 

Bader [Badr] extended bisection algorithm to trisection in oreder to create a better algorithm to hybridize 

it with false position algorithm. The algorithm is as follows. 

• Input: Function f(x), Initial approximations [a,b] and absolute error eps. 

• Output: Approximate root r, enclosing interval, and number of iterations k 

for k=1 to n 

p := (2*a +b)/3; q := (a +2*b)/3; 

if |f(p)| < |f(q)|  

r := p  

else  

r := q  

endif; 

if |f(r)| < eps  
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return r,a,b, k; 

else if f(a)*f(p) < 0   

b:=p;  

else if f(p)*f(q) < 0  

a:=p;  

b:=q;  

else  

a:=q;  

end if; 

end for 

 

2.4.3 Quadsection Algorithm (new here) 

In this paper, we adapted trisection algorithm to craft aQuadsection algorithm to hybridize, more heuristically, 

with false position method. Quadsection algorithm incurs no more computational cost than the Trisection 

algorithm, but requires fewer iterations, in general, to reach an approximate solution. The algorithm is as follow.  

• Input: function f(x), Initial interval [a,b] and absolute error eps. 

• Output: Approximate root r, enclosing interval, and number of iterations k 

for k=1 to n 

p:= (3*a +b)/4; m := (2*a +2*b)/4; q := (a +3*b)/4; 

      r=m; 

if f(a)*f(m)< 0 

b=m; r=p; 

if f(a)*f(p)<0 

  b=p  

else  

a=p  

endif 

else  

a=m;r=q; 

if f(a)*f(q)<0 

  b=q  

else  

a=q  

endif 

endif 

if |f(r)| < eps  

 return r, a,b, k; 

endif 

endfor 

 

The Trisection algorithm [Badr] and anew Quadsection algorithm are conceptually equivalent in each iteration. 

From the following tables, it is clear that Quadsection algorithm requires fewer iterations to converge. It shows 

that Quadsection algorithm competes successfully with the other algorithms with respect to number of loop 

iterations, CPU time, and accuracy in approximation of the root. These benchmark functions appear in recent 

papers in the literature. See Tables 10-15 for comparing the performance of the sectioning algorithms. The 

functions and the interval of definition are generic of any algorithm. In all the ensuing examples in this paper, 

algorithm halting upper bound is 40 for iterations and upto 10 decimal digits for approximation in the acceptable 

root. 

Table 10. Function  x^2 - x - 2  

   Method       Interval        Root         Error       Iterations             TimeCPU 

Bisection    [1,6]   1.000000000000 0.000000000003           40                0.007535792000 

Trisection   [1,6]   2.000000000000 0.000000000001       27                0.008417209000 

Quadsection  [1,6]   2.000000000000 0.000000000001            21                0.011262208000 

_ 

Table 11. Function  0.986*x.^3 -5.181* x.^2 +9.067*x-5.289 

   Method      Interval        Root          Error    Iterations                      TimeCPU 

Bisection    [1,5]   1.929846242856 0.000000000001           37                0.008264875000 
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Trisection   [1,5]   1.929846242855 0.000000000001   24                 0.009037791000 

Quadsection  [1,5]   1.929846242841 0.000000000001       19               0.008326791000 

_ 

Table 12. Function    exp(x).*(x-1)  

   Method      Interval        Root          Error     Iterations                TimeCPU 

Bisection    [1,4]   1.000000000000 0.000000000119          40                 0.012896875000 

Trisection   [1,4]   4.000000000000 2620.711201590      40                 0.016012917000 

Quadsection  [1,4]   1.000000000000 0.000000000000           1                 0.012987334000 

_ 

Table 13. Function(x-1).*(x-2).*(x-3)  

   Method      Interval         Root          Error     Iterations            TimeCPU 

Bisection    [1,3]   2.000000000000 0.000000000000            1               0.005182542000 

Trisection   [1,3]   2.000000000000 0.000000000000       26               0.003394209000 

Quadsection  [1,3]   2.000000000000 0.000000000000            1               0.004560500000 

_ 

Table 14. Function  x-cos(x)  

   Method      Interval        Root          Error       Iterations            TimeCPU 

Bisection    [0,1]   0.739085133215 0.000000000001        39               0.002875750000 

Trisection   [0,1]   0.739085133215 0.000000000000   24                0.001766334000 

Quadsection  [0,1]   0.739085133216 0.000000000001       20                0.002702500000 

_ 

Table 15. Function  x-exp(-x)  

   Method      Interval        Root          Error          Iterations           TimeCPU 

Bisection    [0,1]   0.567143290409 0.000000000001          38                0.009934417000 

Trisection   [0,1]   0.567143290410 0.000000000000      25                0.008384250000 

Quadsection  [0,1]   0.567143290409 0.000000000001          19               0.013742375000 

 

III. HYBRID ALGORITHMS 
Now we present recent hybrid algorithms and a new proposed hybrid algorithm. The existing hybrid 

algorithms have one thing in common. At each iteration, they compute the bracketing interval for each of the 

two hybridizing algorithms, and compute the interval common to the two algorithms to use at the next iteration. 

It incurs a computation step. Here in the new algorithm, there is no need to perform such computation because 

we can have the common interval readily available without performing this computation.   

First we describe the original hybrid algorithm, namely, Hybrid1 [Sabh] based on classical Bisection and 

False Position algorithms. Since the classical algorithms can be found in any text book, those algorithms are not 

described here. For reference in hybrid algorithm, and for the sake of completeness, these algorithms are 

delegated to an appendix Section VI. 

In Hybrid1 algorithm, at each iteration, more promising root between the Bisection and False Position 

approximate roots is selected, and common interval is computed for the next iteration. This curtails the 

unnecessary iterations in either method. It was succeeded by more efficient algorithms using Trisection method 

in place of Bisection algorithm: Hybrid2 [Badr] and Hybrid3 [Thota].  These algorithms lead the way for us to 

discover more heuristics to design a new blended algorithm Hybrid4 which is more efficient than the previous 

three hybrid algorithms. All the four algorithms are described here for reference. 

 

 Hybrid1: Bisection and False Position Algorithm [Sabh] 

Input: f , [a, b], ∈s,  maxIterations 

Output: root r, k-number of iterations, error of approximation ∈a, bracketing interval [ak+1, bk+1] 

//initialize 

k = 0; a1 = a, b1 = b 

Initialize bounded interval for bisection and false position 

pak+1=ba k+1=a1;pbk+1=bbk+1=b1 

repeat 

    pak+1=bak+1=ak; pbk+1=bbk+1=bk 

    compute the mid point the error 

    m= 
ak +bk

2
, and ∈m = |f(m)| 

 compute the False Position point and error, 
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 s = ak − 
f(ak )(bk −ak )

f bk  −f(ak )
and ∈p = |f(s)| 

 if |f(m)| < |f(s)|, 

f(m) is closer to zero, Bisection method determines bracketing interval [bak+1, bbk+1] 

 r= m 

∈a = ∈m 

 if f(ak)·f(r) > 0, 

  bak+1 = r; bbk+1 = bk; 

        else 

      bak+1 = ak; bbk+1 = r; 

  endif 

else 

       f(s) is closer to zero, False Position method determines bracketing interval [pak+1, pbk+1] 

       r= s 

∈a = ∈p 

           if f(ak)·f(r) >0, 

              pak+1 = r; pbk+1 = bk; 

            else 

                pak+1 = ak;  bk+1 = r; 

             endif 

        endif 

    Since the root is bracketed by both [bak+1, bbk+1] and [pak+1, pbk+1], set 

    [ak+1, bk+1] = [bak+1, bbk+1] ∩ [pak+1, pbk+1] or  

    ak+1 = max(bak+1, pak+1); 

    bk+1 = min (bbk+1, pbk+1); 

    outcome: iteration complexity, root, and error of approximation 

iterationCount = k 

    r = rk 

    error = ∈a = |f(r)| 

    k = k + 1 

until |f(r)| <∈s  or k >maxIterations 

 

Hybrid2: Trisection and False Position Algorithm [Badr] 

This function implements a blend of trisection and false position methods. 

Input: The function f; the interval [a, b] where f(a)f(b) < 0 and the root lies in [a, b], 

The absolute error (eps). 

Output: The root (x), The value of f(x), Numbers of iterations (n), the interval [a, b] where the root lies in 

n = 0; a1 := a; a2 := a; b1 := b, b2 := b 

while true do 

n := n + 1 

 xT1 := (b + 2*a)/3 

 xT2 := (2*b + a)/3 

 xF := a − (f(a)*(b − a))/(f(b) − f(a)) 

 x := xT1 

 fx := fxT1 

if |f(xT2)|< |f(x)| 

x := xT2 

if |f(xF)| < |f(x)| 

 x := xF 

if |f(x)| <= eps 

 return x, f(x), n, a, b 

if fa * f(xT1) < 0 

 b1 := xT1 

else if f(xT1) * f(xT2) < 0 

 a1 := xT1 

 b1 := xT2 

else 

 a1 := xT2 
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if fa*f(xF) < 0 

 b2 := xF; 

else 

 a2 := xF; 

a := max(a1, a2) ; b := min(b1, b2)           

end (while) 

 

Hybrid 3: Trisection and Newton-Raphson Algorithm [Thota] 

This algorithm is along the same lines as Hybrid 2, but with (1) instead of false position method, it uses 

Newton-Raphson algorithm which requires differentiability of the function, (2) improved iteration count and 

accuracy in the hybridization step: namely, the common interval in each iteration is computed by analyzing the 

five function values and then mapped to parameter values for the optimal interval. 

The Algorithm is as follows. 

• Input: Function f(x), an Initial approximations x0 and absolute error eps. 

• Output: Root x and number of iterations n  

df(x):=f’(x); k:=0;  

for k=1:n 

p := (2*a + b)/3;  

q := (a + 2*b)/3; 

if |f(p)| < |f(q)|  

then r := p - f(p)/df(p);  

else r := q - f(q)/df(q); 

end if; 

if |f(r)| < eps  

then 

 return r, k; 

else  

find fv:={f(a),f(b),f(r),f(p),f(q)};  

a := xa where fv max -ve;  

b := xb where fv min +ve 

end if; 

end. 

 

Recall, in these three algorithms, there are two steps to coordinate the two algorithms to hybridize. At 

each iteration, they determine (1) the promising approximation root out of the two roots (2) the common interval 

bracketing the approximate root. In Hybrid1 and Hybrid 2 algorithms, this simply reduces to intersection of two 

intervals so that common interval contains the approximate root. No function evaluation is involved in the 

search for common interval to contain the predicted approximate root. In the Hybrid3 algorithm, it searches 

among five function values used to determine two function values pertaining the common interval. From these 

two function values, the function parameters are determined to create the common bracketing interval.  

 

New Hybrid Algorithm 

Hybrid4algorithm provides a more proficient approach to optimization: (1) Quadsection algorithm is used 

instead of bisection or trisection, (2) it eliminates the computation of common interval required by the foregoing 

algorithms used to hybridize, There is no work needed to determine the better of the two roots. This leads to 

more efficiency for optimal root approximation and readily available common interval. It is based on common 

sense Occam’s razor principle [Occam], Fig 2. The Occam’s razor principle is a heuristic, not a proof. That is, 

when faced with competing choices, we use the simplest from what we have.  It will be shown that Occam’s 

Razor Principle works quite well in this case. 

 

 
Figure 2 https://conceptually.org/concepts/occams-razor 

 

https://conceptually.org/concepts/occams-razor


 

International Journal of Latest Engineering and Management Research (IJLEMR) 

ISSN: 2455-4847 

www.ijlemr.com || Volume 08– Issue 12 || December 2023 || PP. 13-28 

www.ijlemr.com                                                       22 | Page 

Hybrid4.  Quadsection and False Position methods 
Input a0, b0, ro, eps, imax, f 

Output k, ak, bk, rk 

for k=1:imax 

  quadsection iteration step determines 

  qak, qbk-, qrk- from qak-1,qbk-1, qrk-1 

  relable 

qak, qbk, qrktoa, b, r- 

  False-position iteration step 

 input isa, b, r instead of oldpak-1, pbk-1, prk-1 

  false position iteration step determines 

  pak,pbk, prk- from a, b, rinstead of old pak-1, pbk-1, prk-1 

This makes [pak,pbk] as the common interval [a,b] without any computation. 

At the same time, using a, b, r instead of old pak-1, pbk-1, prk-1, it makes this step more optimal 

  if f(prk)<eps 

   returnk,pak,pbk, prk 

  end 

  relabel pak,pbk, prk to qak, qbk-,qrk- 

endFor 

 

Summarizing the foregoing algorithms, succinctly the iteration step in the algorithms are:  

Hybrid1  

 [bak,bbk,brk]= Bisection(ak-1, bk-1, rk-1,f) 

 [pak,pbk,prk]=FalsePosition(ak-1,bk-1, rk-1,f) 

The results of hybridization step are: 

rk is better of brkprk, 

[ak,bk] is common to [bak,bbk], [pak,pbk], 

rk belongs to [ak,bk] 

Hybrid 2 

 [tak,tbk,trk]=Trisection(ak-1,bk-1, rk-1,f) 

 [pak,pbk,prk]=FalsePosition(ak-1,bk-1, rk-1,f) 

The outcomes of hybridization are:  

rk is better of trkprk, 

[ak,bk] is common to [tak,tbk], [pak,pbk],  

rk belongs to [ak,bk] 

Hybrid3  

 [tak,tbk,trk]=Trisection(ak-1,bk-1, rk-1,f) 

 [nak,nbk,nrk]=NewtonRaphson(ak-1,bk-1, rk-1,f) 

The upshot of hybridization is:  

rk as better of trknrk, 

[ak,bk] is common from [bak,bbk], [pak,pbk] and nrk by analyzing { f(bak), f(bbk), f(nak),f(nbk), f(nrk})}then 

finding from {{ bak,bbk,pak,pbk, nrk}}.  

rk belongs to [ak,bk] 

Hybrid4  

  [a,b,r]=Quadsection(ak-1,bk-1, rk-1,f) 

  [pak,pbk,prk]=FalsePosition(a,b,r,f) 

The conclusion of hybridization is: there is no need to do any work calculation: [ak,bk] is the same interval 

[pak,pbk] containingrk is the same as prk, the desired root. This algorithm is optimal in the number of iterations 

and the accuracy in approximate root. 

 

IV. DISCUSSION 
Many researchers focused their attention toward using such methods to solve their problems. The roots 

are calculated iteratively, along with the number of iterations within a specified tolerance. In this section, all the 

existing hybrid methods are compared. Error analysis is performed. It is validated here that Hybrid4 algorithm 

preferable than the existing algorithms Hybrid1, Hybrid2, and Hybrid3. 
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A. Empirical Evidence Testing 

We have tested our new algorithm Hybrid4 with other hybrid algorithms on diverse examples found in 

articles in the literature to validate that new algorithm outperforms each of them.   

 

B. Experiments in Matlab 

Moaazzam [MOAA]used Mirosoft visual C++ to find roots, we used Matlab R2022A 64 bit (maci64) on 

MacBook Pro MacOS Sonoma 14.1.1  16 GB Apple M1Pro . Along with numerous different functions and 

varying intervals, we use the same frequently cited functions. Overall we have validated that the new algorithm 

performs better than all the hybrid algorithms. These tests indicate that hybrid with false position algorithm is 

still preferable to hybridization with Newton-Raphson possibly because the NR method requires that the 

function be differentiable.  

For all these Tables 16-22, the functions frequently occurring in the literature.  For all the functions the 

upper bound on the number of iterations is 40 and acceptable approximation error bound is 10
-10

.These tables 

are for comparision of four algorithms number of iterations, CPU compute time, accuracy of the solution. 

  Table 16. Function  x-exp(-x) 

           Method              Interval Root               Error            Iterations               TimeCPU 

Hybrid1: Bisection-FalsePos   [0,1]   0.567143290410 0.000000000001    5                0.023543625000 

Hybrid2: Trisection-FalsePos  [0,1]   0.567143290410 0.000000000000        6                0.013356459000 

Hybrid3: Trisection-NewtonRaph [0,1]   0.567143290409 0.000000000001   11               0.027260750000 

Hybrid4: Quadsection-FalsePos  [0,1]   0.567143290410 0.000000000000    5                0.011438583000 

 

  Table 17. Function  0.986*x.^3 -5.181* x.^2 +9.067*x-5.289 

           Method              Interval Root               Error             Iterations                TimeCPU 

Hybrid1: Bisection-FalsePos   [1,5]   1.929846242844 0.000000000000   10           0.023045459000 

Hybrid2: Trisection-FalsePos  [1,5]   1.929846242848 0.000000000000        9            0.012193917000 

Hybrid3: Trisection-NewtonRaph [1,5]   1.929846242850 0.000000000000   12           0.021333875000 

Hybrid4: Quadsection-FalsePos  [1,5]   1.929846242848 0.000000000000    7            0.011543250000 

 

  Table 18. Function  (x-1).*(x-2).*(x-3) 

           Method              Interval Root               Error            Iterations            TimeCPU 

Hybrid1: Bisection-FalsePos   [1,3]   1.000000000000 0.000000000000    1           0.005420333000 

Hybrid2: Trisection-FalsePos  [1,3]   1.000000000000 0.000000000000        1         0.002555584000 

Hybrid3: Trisection-NewtonR  [1,3]   1.000000000000 0.000000000000        2         0.018167000000 

Hybrid4: Quadsection-FalsePos  [1,3]   1.000000000000 0.000000000000    1          0.002319417000 

 

  Table 19. Function   x^2 - x - 2 

           Method              Interval Root               Error            Iterations            TimeCPU 

Hybrid1: Bisection-FalsePos   [1,6]   2.000000000000 0.000000000000    8           0.002879208000 

Hybrid2: Trisection-FalsePos  [1,6]   2.000000000000 0.000000000000        8          0.003052041000 

Hybrid3: Trisection-NewtonR  [1,6]   2.000000000000 0.000000000000       14           0.004807417000 

Hybrid4: Quadsection-FalsePos  [1,6]   2.000000000000 0.000000000000    6          0.003639750000 

 

  Table 20. Function   x^2  - 2 

           Method              Interval Root               Error                Iterations           TimeCPU 

Hybrid1: Bisection-FalsePos   [1,8]   1.414213562373 0.000000000001    10            0.007323334000 

Hybrid2: Trisection-FalsePos  [1,8]   1.414213562373 0.000000000001          7           0.007474583000 

Hybrid3: Trisection-NewtonRaph [1,8]   1.414213562373 0.000000000000    13             0.008903292000 

Hybrid4: Quadsection-FalsePos  [1,8]   1.414213562373 0.000000000001     6             0.006177333000 

 

  Table 21. Function  x-cos(x) 

           Method              Interval Root               Error             Iterations             TimeCPU 

Hybrid1: Bisection-FalsePos   [0,1]   0.739085133215 0.000000000000    7           0.015696125000 

Hybrid2: Trisection-FalsePos  [0,1]   0.739085133215 0.000000000000        6            0.010849875000 

Hybrid3: Trisection-NewtonR  [0,1]   0.739085133215 0.000000000001       11          0.019732500000 

Hybrid4: Quadsection-FalsePos  [0,1]   0.739085133215 0.000000000000     4        0.015507833000 
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  Table 22. Function    exp(x).*(x-1) 

           Method              Interval Root               Error            Iterations             TimeCPU 

Hybrid1: Bisection-FalsePos   [0,4]   1.000000000000 0.000000000000    9              0.029480000000 

Hybrid2: Trisection-FalsePos  [0,4]   1.000000000000 0.000000000000        9              0.027570208000 

Hybrid3: Trisection-NewtonR  [0,4]   0.000000000000 16.000000000000   40             0.030620416000 

Hybrid4: Quadsection-FalsePos  [0,4]   1.000000000000 0.000000000000    1               0.012339708000 

 

V. CONCLUSION 
We have designed and implemented a new algorithm Hybrid4, a proficient algorithm hybrid of 

Quadsection and Regula Falsi methods. The algorithm was implemented in Matlab R2022A 64 bit (maci64) on 

MacBook Pro MacOS Sonoma 14.1.116GB Apple M1Pro. The implementation tests Tables16-22 indicate that 

Algorithm 4 outperforms all above cited algorithms all the time by a considerable margin.  The experiments on 

numerous datasets used in the literature validate that the new algorithm is effective both conceptually and 

computationally.  Thus, this paper provides a fastest algorithm to the repertoire of hybrid algorithms.  

 

VI. APPENDIX 
There is no universal algorithm optimal for root approximation that works on all the functions on all the 

domain intervals.  We provide a summary of classical methods here for reference.  In the paper, we have 

provided a new hybrid algorithm that is based on the classical methods and  outperforms both the classical and 

hybrid methods.  
There are four classical methods for finding roots of non-linear equations: Bisection, Regula Falsi, 

Newton-Raphson, Secant. For completeness, we describe these methods briefly for (1) root approximation, (2) 

error calculation, and (3) termination criteria. Then we use Occam’s razor principle to select the optimal method 

for error calculation and termination criteria.  
We constrain this discussion to finding a single root instead of all the roots of an equation. In case, an 

equation has several roots, we can delineate an interval where the desired root is to be found.  

 
A. Bisection Method 

The Bisection method is (1) based on binary chopping of irrelevant  subintervals, (2) virtually binary 

search,  and (3) guaranteed to converge to the root. Bisection method is static, the length of the subinterval at 

each iteration is independent of the function. No matter what the function is, the root-error upper bound is fixed 

at each iteration and can be determined a priori. By specifying the root-error tolerance, the upper bound on the  

number of iterations can be predetermined quickly[Mathews]. 

Problem  If a function f:[a, b]R (1) is continuous and (2) f(a) and f(b) are of opposite signs, i.e., f(a)•f(b) < 0, 

then there exists a root r∈ [a, b] such that f(r) = 0. 

Let [a1,b1] = [a, b] be the initial interval of continuity of f.  The first approximate root is 

  r1 = 
𝑎1+𝑏1

2
, middle point of the interval [a1,b1] 

the actual root lies in the interval [a1, r1] or [r1,b1],  

if f(r1)=0, r1 is the root. 

if f(a1) and f(r1) are of the opposite sign, f(a1)•f(r1) < 0, true root lies in [a1, r1]  

if f(r1) and f(b1) are of the opposite sign, f(r1)•f(b1) < 0, true root lies in [r1,b1], 

The new interval is denoted by [a2,b2] 

At each iteration, new root and next sub-interval is generated. 

In general, for each iteration k, the approximation   

rk=
𝑎𝑘 +𝑏𝑘

2
 is middle point of [ak, bk],  

Either rk is the root or  

if f(ak)•f(rk) < 0, the root lies in [ak, rk] 

else if f(rk)•f(bk) < 0, the root lies in [rk, bk]   

Then the new interval is denoted by [ak+1,bk+1] with rk  as one of its end points 

 

A.1 Advantages of Bisection Method 

Since the method brackets the root, at each iteration the length of root-bracketing interval is scaled to half 

the length. Thus, the method guarantees the decrease in the error in the approximate root at each iteration. The 

convergence of Bisection method is certain as it is simply based on halving the bracketing interval containing 

the root. 
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A.2 Drawbacks of Bisection Method 

Though the convergence of Bisection method is guaranteed, its rate of convergence is too slow and as 

such it is quite difficult to extend to use for systems of equations. If one of the initial endpoints is closer to the 

root, Bisection method does not take advantage of this information,  it will take larger number of iterations to 

reach the root [Mathew]. 

 

B. False Position (Regula Falsi) Method[wiki], [Harder] 

Motivation for innovative methods arises from the poor performance of Bisection method. The False 

Position method is known by various names: Double False Position, Regula Falsi method, linear interpolation 

method. It is a very old method for solving equations in one unknown. This method differs from Bisection in the 

way the estimates are calculated. False Position method is a dynamic method, it takes advantage of the location 

of the root to make a conceivably better appropriate selection. Unfortunately, this method is not satisfactory as 

expected, for all functions, see Figure 3,4,5,6.   

Here also the function f:[a, b]R (1) is continuous and (2) f(a) and f(b) are of opposite signs, i.e., 

f(a)•f(b)<0. The algorithm uses a, b as the two initial estimates a1, b1 of the root.  The False Position method 

uses two start values ro = a1, r1 =b1, to compute  successive values 

rn = rn-1  -
𝑓(𝑟𝑛−1)(𝑟𝑛−1−𝑟𝑛−2)

𝑓(𝑟𝑛−1)−𝑓(𝑟𝑛−2)
 for natural number n ≥2 

 the approximations,  rn , are ensured to be bracketed in [an, , bn] depending on f(an-1)•f(rn)<0 for [an-1,rn] [rn, bn-

1] depending on as in the case of Bisection method,  

 

B.1 Justification: Error in Bisection method is straight forward; in each iteration root approximation error is 

halved, i.e. root approximation error in the nth step is no larger than 
𝑏−𝑎

2𝑛  . This is not the case for False Position 

method. If a is sufficiently close to the root r, then f(a) is close to f(r) = 0  due to continuity of f.  With step size 

h = r-a, slope of the secant line slope,
𝑓 𝑏 −𝑓(𝑎)

𝑏−𝑎
 , is approximately equal to 

𝑓 𝑏 

𝑏−𝑟
.  The closer b is to r, the closer the 

secant line is to tangent, f’(r). Though, it is not required that f be differentiable.  The closer b is to r, faster the 

convergence of iterations [Harder].  

 

B.2 Advantages of False Position Method 

It is guaranteed to converge due to decreasing length of root-bracketing interval. It is fast when you know 

the linear nature of the function.  

 

B.3 Drawbacks of False Position Method 

For False Position method, there is no way to tell the number of iterations needed for convergence. The 

False Position method is expected to be faster than Bisection method. If we cannot ensure that the function 

can be interpolated by a linear function, then applying the False Position method can result  in worse results 

than the Bisection method. The problem occurs when the function is convex, concave up or concave down 

According to [10], for concave down function, left end point remains stationary and right end point updates in 

each iteration. For concave up function, right end point remains stationary and left end point updates in each 

iteration. This is not an accurate statement, it works some of the functions, not all the functions. Figures 3, 4, 5,6 

contradict this statement. It depends on the convexity of the function, not concavity up or down. When the root 

is very close to the end points of the interval, convergence can become extremely slow. Visuals are helpful 

insight to comprehend the behavior of algorithms. 

In these examples, four functions are used with same tolerance and the upper limit of 10 iterations for 

display purposes. The purpose is to show how the algorithms work for False Position method. In the interest of 

simplicity of plots, we terminated the algorithms before reaching the error-tolerance. 
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Figure 3. Convex Function Concave up, right end point fixed 

                      Figure 4. Convex Function Concave up, right end point fixed 

 

                           
Figure 5. Convex Function Concave down, right end point fixed 

                                                           Figure 6. Convex Function Concave down, left end point fixed 

 

C. Newton-Raphson Method 

Newton-Raphson method  is also called a fixed point iteration method. This method requires that the 

function be differentiable. If the function f(x) is differentiable on the domain of the function, and r0 is initial 

guess, then the first approximation r1 is defined by 

 r1 = r0 - f(r0)/f’(r0) 

and successive approximations are  

rn = rn-1 - f(rn-1)/f’(rn-1) for natural numbers n ≥ 2. 

 

This method converges provided |x - f(x)/f’(x)| < 1 for x in the domain of definition. For functions where 

there is a singularity and it reverses sign at the singularity, Newton-Raphson method may converge on the 

singularity. 

 

C.1 Advantages of the Newton-Raphson method 

The convergence rate is linear and this method is very fast as compared to Bisection and False Position 

methods. If we know the multiplicity, m, of the root, it can be further improved with faster convergence to the 

root [3]. The updated iteration formula becomes, 

rn = rn-1 – m f(rn-1)/f’(rn-1) for natural numbers n ≥ 1. 

Note. If f
(k)

(x) = 0, for integers k < m, then multiplicity of root is m. 

 

 

 

 



 

International Journal of Latest Engineering and Management Research (IJLEMR) 

ISSN: 2455-4847 

www.ijlemr.com || Volume 08– Issue 12 || December 2023 || PP. 13-28 

www.ijlemr.com                                                       27 | Page 

C.2 Disadvantages of the Newton-Raphson method; 

The only pitfall is that it fails if the derivative, f’(x), is near zero at some iteration. For example, Newton-

Raphson method fails to compute r1for  f(x) = x
2
 -1 where r0 = 0. But it does not create a problem in some cases 

where singularity in f’(x) cancel with f(x). for example, f(x) = x
3
 with r0 = 0 does result in r1 = 0. 

 

D. Secant Method, Modified Secant Method[EHI] 

The Secant method also requires that the function be differentiable. When it is not easy to compute the 

derivative of the function, the Secant method approximates the derivative with the slope of a secant line. That is, 

in the absence of derivative of the function, Secant method is a modification of the Newton-Raphson method. In 

fact, it does not need differentiability as well as bracketing. It is similar to False Position method. The only 

difference is that False Position method ensures that approximations are bracketed and Secant method simply 

uses the last two values to approximate the tangent. Thus, the Secant method is not guaranteed to converge. 

The convergence rate of the Secant method is super linear.  Thus, the convergence rate is between that of the 

Bisection method and the Newton-Raphson’s method. The Secant method requires two initial values, whereas 

Newton-Raphson required only one start values. If the function f(x) is differentiable, and r0, r1 are two is initial 

guess, then the approximations of the secant method can be written as   

rn = rn-1 -
𝑓(𝑟𝑛−1)(𝑟𝑛−1−𝑟𝑛−2)

𝑓(𝑟𝑛−1)−𝑓(𝑟𝑛−2)
 for natural numbers n ≥ 2 

For better estimate of the slope of the Secant line, we can define a small constant delta, 𝛿, so that it 

can uniformly replace rn-2with  rn--1 - 𝛿 as  

rn = rn-1  -  
𝑓(𝑟𝑛−1)(𝑟𝑛−1−𝑟𝑛−2)

𝑓(𝑟𝑛−1)−𝑓(𝑟𝑛−2)
 = rn-1  -  

𝑓 𝑟𝑛−1 𝛿

𝑓(𝑟𝑛−1)−𝑓(𝑟𝑛−1−𝛿)
 

The success of this method is questionable if 𝛿 is not chosen sufficiently small. 

 

D.1 Advantages and Shortcomings 

It has the advantage for finding a bracketing-interval quickly where the root lies, but choice of delta 

must be made adaptively, else the algorithm runs the risk of missing the root. 

Some researchers, experimented on  f(x) = x - cos(x) on a close interval [0,1] and concluded that secant 

method is better than Bisection and Newton-Raphson method [Nayak], [srivastava]. It is not accurate to make a 

general conclusion statement from one function.  
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