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Abstract: The paper introduces the simulation algorithm of a given distribution by using the cumulative 

distribution function inversion. Implementing such simulation algorithm is performed using a practical approach 

in which the Newton-Raphson method is applied to find an approximation to a sample of the given probability 

distribution. This approximation enables the simulation in the situation where the inverse of the cumulative 

distribution function is expensive or impossible to find explicitly.  
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I. INTRODUCTION TO MONTE CARLO SIMULATION 

The simulation of a given probability distribution becomes valuable in many applied science sectors. An 

efficient simulation method is needed to reduce the computational cost for the reason of practice with the 

adaptation in real-time. The Monte Carlos simulation has advantages when dialing with complex systems, where 

analytical solutions are difficult to obtain or when there is inherent uncertainty. They provide a means to explore 

a range of possible outcomes, make informed decisions, and assess risks in a wide array of applications. One of 

the most valuable applications of Monte Carlo simulation in this context is for risk analysis, particularly in 

financial modeling and decision-making. Monte Carlo simulations are widely used in the pricing of financial 

options, such as European and American options ([1-3]). By simulating the possible future price paths of 

underlying assets, financial analysts can estimate the option's value and assess the associated risks. Banks and 

financial institutions use Monte Carlo simulations to model credit risk. They simulate the probability of default 

and potential losses associated with a portfolio of loans or bonds. Manufacturing industries use Monte Carlo 

simulations to model quality control processes, ensuring that products meet specified quality standards even 

when there are variations in manufacturing conditions. The Monte Carlo method is a preferable option to reduce 

the computational cost which is only of a linear order of increase with respect to the dimension. 

For a given random variable 𝑋 in the probability space  Ω, ℱ, 𝑃 . Consider the cumulative distribution 

function (c.d.f) 𝐹: ℝ ⟶  0,1 , 𝑥 ⟼ 𝐹 𝑥 = 𝑃 𝑋 ≤ 𝑥 . We define the left-continuous inverse of the c.d.f 𝐹 to be 

the function: 𝐹←:  0,1 ⟶ ℝ, 𝑢 ⟼ 𝐹← 𝑢 = inf 𝑦 ∈ ℝ: 𝐹 𝑦 ≤ 𝑢 . If 𝐹  is a bijection, then 𝐹←  is identical to 

the inverse function 𝐹−1 of 𝐹. The following result ([4], Theorem 2.3) provides the simulation algorithm to 𝑋. 
Theorem. Let 𝐹  be a c.d.f of a random variable with the inverse 𝐹←. Let 𝑈  be an uniform random 

variable over the interval  0,1 . Then, 𝑋 = 𝐹← 𝑈  has the c.d.f 𝐹. 
Proof. We have, for all 𝑥 ∈ ℝ, 

𝑃 𝑋 ≤ 𝑥 = 𝑃 inf 𝑦 ∈ ℝ: 𝐹 𝑦 ≤ 𝑈 ≤ 𝑥 = 𝑃 𝑈 ≤ 𝐹(𝑥) =  𝑑𝑡

𝐹(𝑥)

0

= 𝐹 𝑥 . 

This shows that 𝑋 has the c.d.f 𝐹. Here, the last identity is followed from the fact that 𝐹 𝑥 ∈  0,1 . 
Example 1. (Exponential distribution) Let 𝑋 be the exponential distribution with parameter 𝜆 > 0. The 

c.d.f of 𝑋 is 𝐹 𝑥 =  𝜆𝑒−𝜆𝑡𝑑𝑡
𝑥

0
. Then, 𝐹← 𝑈 = 𝐹−1 𝑈 = −

1

𝜆
ln 1 − 𝑈  is the random variable with the same 

distribution for the uniform random variable 𝑈 over the interval  0,1 . So, 𝑋 = 𝐹← 𝑈  is the simulation to 𝑋. 

Remark. We can use the simulation 𝑋 = −
1

𝜆
ln 𝑈, where 𝑈 is the uniform random variable over the 

interval  0,1 . This function is constructed on the basis of the inverse 𝐹← 𝑢 = −
1

𝜆
ln 1 − 𝑢  since  1 − 𝑈 and 

𝑈 are also uniformly distributed over  0,1 . 
Example 2. (Cauchy distribution) The Cauchy distribution with the parameter 𝜎 > 0 has the probability 

density function 𝑓 𝑥 =
𝜎

𝜋 𝑥2+𝜎2 
. Then, 𝑋 = 𝐹← 𝑈 = 𝐹−1 𝑈 = 𝜎 tan 𝜋𝑈 has the c.d.f 𝐹. 

 

II. IMPLEMENTATION 
The implementation of the c.d.f inversion requires to find the explicit function 𝐹←. This can only be 

possible if 𝐹  is bijective. However, the numerical approach to find the solution 𝑥 = 𝐹← 𝑢  of the equation 
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𝐹 𝑥 = 𝑢 can be used. In that scene, the Newton-Raphson method is usually suitable to dial with that numerical 

approach. We propose here an algorithm to implement that idea. 

Algorithm. Input: Given a positive probability density function 𝑓: ℝ ⟶ ℝ+ =  0, ∞ , so its c.d.f is 

𝐹 𝑥 =  𝑓(𝑡)
𝑥

0
𝑑𝑡, given a prescribed threshold 𝜀 > 0. 

Output: 𝑥  to be an approximation to the solution of the equation 𝐹 𝑥 = 𝑢  within the prescribed 

threshold. 

Step 1: Draw a sample 𝑢 from the uniform random variable 𝑈 over the interval  0,1 . 
Step 2: Take the initial approximation 𝑥0 = 𝑢. 
Initiate the first approximation 𝑙 = 0. 
While 0 ≤ 𝑙 ≤ 𝑁𝑚𝑎𝑥: generate the number 

𝑥𝑙+1 = 𝑥𝑙 −
𝐹 𝑥𝑙 − 𝑢

𝑓 𝑥𝑙 
, 

 If  𝑥𝑙+1 − 𝑥𝑙 < 𝜀, then set 𝑥 = 𝑥𝑙+1 and exit the While-loop and get Output: The procedure succeeds, 

go to Step 3; 

 else, 𝑙 = 𝑙 + 1. 
Step 3: If 𝑙 > 𝑁𝑚𝑎𝑥, Output message: The procedure fails; 

 else, end the procedure successfully.  

 

The error of the approximation is estimated on the basis of absolute error where the convergence of the 

sequence  𝑥𝑙 𝑙≥0 is guaranteed.  

Below, we present two Matlab programs to implement the algorithm.  

 

Program 1: 𝐹← is assumed to be known (It can be explicitly determined) 
function outp =  invcdf(invF,n) 

% n is the sample size 

% invF is the inverse of the c.d.f F 

for j=1:n 

    u=rand(); 

    outp(j) = invF(u); 

end 

 

Program 2: 𝐹← is assumed to be unknown or is not needed to find explicitly 
function  outp=invcdf(f,n,xL,maxiter,tol) 

% n is the sample size 

% xL lower limit 

% maximum number of iterations 

for j=1:n 

       u=rand(); 

       x0 = u; 

for i=1:maxiter 

           Fx0 = integral(@(t) f(t),xL,x0); 

           x1 = x0 - (Fx0-u)/f(x0); 

if abs(x1-x0)<tol 

break 

end 

           x0 = x1; 

end 

       outp(j) = x1; 

end 

 

III. NUMERICAL EXPERIMENTS 
The section aims to present some numerical experiments of the algorithm proposed. This results shows 

the time consumption of the implementations introduced above. The experiments are perform on a computer 

with a CPU of 8GB,  

Example 3.  Consider the exponential distribution with several values of the parameter 𝜆 > 0, with the 

c.d.f is𝑓 𝑥 = 𝜆𝑒−𝜆𝑥 . We will use in the place of 𝐹← the simulation as one given in Example 1 for Program 1. 

 That is, 𝑋 = −
1

𝜆
ln 𝑈 , for 𝑈~𝒰 0,1 . 



 

International Journal of Latest Engineering and Management Research (IJLEMR) 

ISSN: 2455-4847 

www.ijlemr.com || Volume 08– Issue 10 || October 2023|| PP. 83-87 

www.ijlemr.com                                                     85 | Page 

The computations are given in Table 1. 

𝜆 Sample size 𝑛 Time consume (in second) of 

Program 1 

Time consume (in second) of  

Program 2 

𝑚𝑎𝑥𝑖𝑡𝑒𝑟 = 10, 𝑡𝑜𝑙 = 10−3 

𝜆 = 0.5 𝑛 = 10,100,1000 0.008373, 0.009154, 0.012558 0.028497, 0.179688, 1.444786 (Figure 1) 

𝜆 = 1 𝑛 = 10,100,1000 0.007831, 0.005624, 0.011675 0.026016, 0.146433, 1.222732 

𝜆 = 2 𝑛 = 10,100,1000 0.008804, 0.004679, 0.007208 0.019931, 0.132912, 1.070706 

𝜆 = 21 𝑛 = 10,100,1000 0.005680, 0.007002, 0.008162 0.225716, 1.492402, 13.883603 

Table 1. Computational time for simulating the exponential random variable 

 

Example 4. Consider the random variable 𝑋 which is the Cauchy distribution with the parameter 𝜎 > 0 

with the probability density function 𝑓 𝑥 =
𝜎

𝜋 𝑥2+𝜎2 
. Simulate 𝑋 = 𝐹← 𝑈 = 𝐹−1 𝑈 = 𝜎 tan 𝜋𝑈 with several 

values of 𝜎. The computational time of Program 1 and Program 2 are shown in Table 2. 

 

𝜎 Sample size 𝑛 Time consume (in second) of 

Program 1 

Time consume (in second) of  

Program 2 

𝑚𝑎𝑥𝑖𝑡𝑒𝑟 = 10, 𝑡𝑜𝑙 = 10−3 

𝜎 = 0.5 𝑛 = 10,100,1000 0.023061, 0.025929, 0.030998 0.095558, 0.675244, 5.623255 

𝜎 = 1 𝑛 = 10,100,1000 0.022628, 0.027330, 0.034090 0.105147, 1.068485, 6.319283 

𝜎 = 2 𝑛 = 10,100,1000 0.040685, 0.028570, 0.032059 0.091704, 0.921268 (Figure 2), 

6.628591 

𝜎 = 20 𝑛 = 10,100,1000 0.026457, 0.031282, 0.029755 0.158800, 0.855429, 7.552468 

Table 2. Simulation of the Cauchy distribution with several values of 𝜎 > 0. 

Figure 1. Histogram for the exponential random variable simulated by the program 2 with 𝜆 = 0.5, 𝑛 = 1000, 

𝑚𝑎𝑥𝑖𝑡𝑒𝑟 = 10, 𝑡𝑜𝑙 = 0.001. 
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Figure 2. Histogram of the Cauchy distribution with 𝜎 = 2 simulated from Program 2 with 

𝑛 = 100, 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 = 10, 𝑡𝑜𝑙 = 10−3. 
  

Example 5. (Normal distribution) Simulation of the standard normal distribution with the p.d.f. given by 

𝑓 𝑥 =
1

 2𝜋
𝑒−𝑥2/2. Program 2 is used to perform the procedure. The computational time is shown in Table 3.  

Sample size 𝑛 Computational time (in seconds) of the standard 
normal distribution with Program 2 

𝑚𝑎𝑥𝑖𝑡𝑒𝑟 = 10, 𝑡𝑜𝑙 = 10−3 
𝑛 = 10 0.091017 

𝑛 = 100 0.579677 

𝑛 = 1000 4.106882 

Table 3. Computational time for simulating the standard normal distribution with 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 = 10, 𝑡𝑜𝑙 = 10−3. 
  

The algorithm constructed has shown its advantage in situation that the explicit inversion of the c.d.f is 

hard or impossible to find. The above experiments presents that this algorithm has a good efficiency and the 

implementation in Matlab is simple with a low computational cost. The output from this implementation 

attempts a good accuracy when performing on various distributions. 

 

 
Figure 3. Histogram of the standard normal distribution simulated by Program 2 with 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 = 10, 𝑡𝑜𝑙 =

10−3, 𝑛 = 1000. 
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IV. CONCLUSION 
The algorithm constructed for the simulation of a distribution by the cumulative distribution function 

inversion method shows its simplicity and efficiency in performing. The advantages of the techniques is verified 

especially for the circumstance where an explicit inverse of the cumulative distribution function is difficult or 

impossible to present. Besides, the paper also presents the implementation for the algorithm in Matlab language. 

The numerical experiments is presented to prove the advantage of the algorithm proposed. 
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