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Abstract: Tacrolimus, sirolimus, and ascomycin are macrolides related to a decrease in the occurrence and 

severity of refractory rejection episodes and other diseases, such as the skin and eyes.The determination of 

optimum initial sources of carbon and nitrogen in the medium is an essential step in optimizing the fermentation 

process to obtain these drugs. The current research proposes an innovative technique as selection criteria to 

culture media carbon and nitrogen sources.The concept is an analogy to group contribution from 

thermodynamics to identify molecular fragments. Tacrolimus, sirolimus and ascomycin molecular structures and 

fermentation results of these macrolides were analyzed. This approach can enhance the productivity of these 

important immunosuppressants. 
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1. Introduction 
In Brazil, since the promulgation of the 1988 Federal Constitution, the right to health is universal, 

including comprehensive therapeutic and pharmaceutical assistance. Brazil has the largest public transplantation 

system in the world, with the Unified Health System (SUS) responsible for financing 96 % of all procedures 

related to the transplantation process [1]. However, in view of the covid-19 pandemic, there is a totally new 

situation in people's lives and a profound impact on the current generation. Mankind has a historic moment of 

extreme exceptionality, whose greatest recommendation in isolation, understanding that this isolation is not a 

personal choice, but a social necessity. Ordinary situations and demands could be assessed, circumvented, 

digested in such a way as to proceed with daily activities. It is not the case, because one lives in a universe that 

approaches science fiction, apocalyptic, but deeply real. Prudence and common sense are needed, with science 

and technology as determining allies, especially for the population considered at risk, such as those who needs 

transplants and those who have already had the transplant. This reflection clearly points to important social issue 

to be resolved, which necessarily involves investments in research and development and innovation in the 

production of immunosuppressants tacrolimus, sirolimus and ascomycin.Immunosuppressants stop your 

immune system from damaging healthy cells and tissues. People with organ transplants and stem cell transplants 

take these medicines to prevent transplant rejections. The drugs also treat autoimmune disease symptoms. 

Immunosuppressants are powerful drugs that require careful monitoring to avoid problems [2]. 

Tacrolimus, known as FK506 and fujimycin, is a macrolide lactone with molar mass 804.018 g/mol and 

empirical formula C44H69NO12, can be obtained via fermentation by several species of Streptomyces genus, 

usually Streptomyces tsukubaensis [3]. Tacrolimus was discovered in 1987; it was among the first macrolide 

immunosuppressants discovered, preceded by the discovery of sirolimus (rapamycin) on Rapa Nui (Easter 

Island) in 1975. Tacrolimus is produced by a soil bacterium, Streptomyces tsukubensis.Tacrolimus is 

recommended as immunosuppressive drug for therapy of kidney and liver transplantation treatment[4]. In 

addition, tacrolimus (Fig. 1), is recommended for the treatment of autoimmune diseases, rheumatoid arthritis, 

and lichen planus [5], as well as in bronchial asthma treatments, dermatological disorders as vitiligo, psoriasis, 

atopic dermatitis [6], eye diseases like uveitis [7], and retinoblastomas [8]. 

Sirolimus (Fig. 2), empirical formula C51H79NO13, also known as rapamycin with molar mass 914.17 

g/mol and sold under the brand name Rapamune is a macrolide compound that is used to coat coronary stents, 

prevent organ transplant rejection, treat a rare lung disease called lymphangioleiomyomatosis [9], and treat 

perivascular epithelioid cell tumor (PEComa)[10]. It has immunosuppressant functions in humans and is 

especially useful in preventing the rejection of kidney transplants [11].Sirolimus was initially developed as an 

antifungal agent [12]. However, this use was abandoned when it was discovered to have potent 

immunosuppressive and antiproliferative properties due to its ability to inhibit mTOR [13]. Sirolimus also acts 

in the treatment of dermatologic disease [14], diabetes [15] and, H1N1 [16] and H5N6 virus [17 and limitations 

of mTOR inhibitors in the treatment of cancer [18]. 
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Figure.1. Tacrolimus (C44H69NO12)applications. 

 

 
Figure. 2.Sirolimus (C51H79NO13) applications. 

 

 
Figure. 3.Ascomycin(C43H69NO12) applications. 
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Ascomycin, empirical formula C43H69NO12, also called Immunomycin, FR-900520, FK520, is an ethyl 

analog of tacrolimus (FK506) with strong immunosuppressant properties. Ascomycin (FK520),(Fig. 3),was 

initially referred to as FR-900520 and isolated from S. hygroscopicus KK317 in 1962 [19]. It was due to the 

high effectiveness of an orally used cyclosporin A that is a cyclic peptide accompanying 11 amino acids, which 

led to the discovery of this novel class of compounds. It has been researched for the treatment of autoimmune 

diseases and skin diseases, and to prevent rejection after an organ transplant [20].Additionally, ascomycin 

preferentially inhibits the activation of mast cells, an important cellular component of the atopic response. 

Ascomycin produces a more selective immunomodulatory effect in that it inhibits the elicitation phase of 

allergic contact atopic dermatitis and seborrheic [21] but does not impair the primary immune response when 

administered systemically. Ascomycin against Zika, hepatitis C and, dengue virus [22]. 

The improving FK-506 production can be done by mutants of S. tsukubaensis[23] or from different 

nutrient media for ordinary S. tsukubaensis bacteria [24,25,26,27,28]. In thesecond case, these authors use 

distinct carbon and nitrogen sources. Analysingthe metabolic pathways of tacrolimus production it is possible to 

observe some precursor, such as methylmalonyl-CoA, malonyl-CoA, methoxymalonyl-CoA, pipecolate among 

others [29]. Some authors apply precursor in the media nutrients to improve the tacrolimus production [30,31]. 

It is important to point that the structures of these precursors are present in tacrolimus structure or, in other 

words, the tacrolimus structure presents fragments of this precursors or classical structures, such as amino acids 

(L-lysine, L-proline for example). 

The sirolimus biosynthesis genes from S. hygroscopicus have been identified by hybridization with DNA 

from the PKS genes for erythromycin biosynthesis [32], whereas most of the nutritional control and regulatory 

mechanism for sirolimus biosynthesis remain unknown. Metabolic engineering for the improvement of 

sirolimus production has not been achieved, yet most efforts have mainly focused on the production of sirolimus 

analogues [33], and strain mutagenesis [34]. Although some different processes for producing sirolimus have 

been disclosed in various scale, the production and productivity of sirolimus on the industrial scale is still low. 

There still faced the challenge for developing an efficient process for sirolimus production. Macrocycle 

biosynthesis of sirolimus is completed by a series of condensations from acetate and propionate building blocks 

via a common polyketide pathway, and incorporation of pipecolic acid (a lysine derived amino acid) unit to 

form the 31-membered macrolide [35]. Based on this biosynthesis logic, precursor amino acids and nutrient 

regulation can play an important role for improving the biosynthesisof sirolimus. However, fewer attempts have 

been made so far to understand the important of amino acids and nutrient components to regulate the sirolimus 

biosynthesis.  

A semisynthetic derivative of ascomycin called pimecrolimus has been used as the first-line treatment for 

mild-to-moderate atopic dermatitis and plays an important role in the market of immunosuppressive drugs [36]. 

Due to its complex macrolide structure, ascomycin is difficult to synthesize by chemical methods, and thus is 

mainly produced by microbiological fermentation [37]. However, the yield of ascomycin produced via 

microbiological fermentation is still low and the production costs are high. Recently, various efforts have been 

made to improve ascomycin yield through genetic manipulation. For example, the overexpression of some key 

genes involved in ascomycin biosynthesis, such as hcd, ccr, fkbR1, and fkbE, led to a marked increase in 

ascomycin yield [38]. In addition, an engineered S. hygroscopicus strain with increased chorismatase (FkbO) 

activity and inactivated pyruvate carboxylase (Pyc), named TD-ΔPyc-FkbO, showed the highest reported 

ascomycin yield to date, 610.0 mg/L [39]. Nonetheless, this yield is considered low, as it is not high enough to 

meet the demands, and the lack of complete genomic information for S. hygroscopicus limits further 

modifications of the strain by genetic manipulation [40]. It is necessary to optimize the composition of the 

culture medium to further enhance ascomycin production. 

The tacrolimus, sirolimus and ascomycin structurespresents other fragments as fatty acids, that  occur in 

classical carbon sources for its productions. As can be seen, it is possible to identify molecular fragments in 

macrolides in analogy of group contribution  methods from thermodynamics, in which the molecular 

fragmentation is used to estimate  

many physicochemical properties of pure compounds and mixtures. The crucial advantage of these 

methods is they need knowledge only of the chemical structure of the compounds without any other input 

information [41]. Then, these methods could be extended for identification of fragments of complex molecule, 

whose objective is to improve its production. 
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2. Methodology 
The metabolic route suggests precursors that are used as strategies to assess productivity [30,31, 42]. In 

this context, the optimization of fermentation media using response surface methodology is common [30, 43]. 

The concept used in this work is based on the group contribution to identify molecular fragments to increase the 

studied macrolides productivity. It is an analogy to the classical group contribution used in the estimation of 

many physicochemical properties of pure compounds and mixtures, in which the fragmentation scheme is 

relevant to the calculation property. The macrolides molecules were fragmented, and the groups are the 

precursors in the fermentation media. In order to investigate this application, studies were evaluated to obtain 

tacrolimus, sirolimus and ascomycin from fermentation of Streptomyces. These studies are reported in Table 1, 

Table 2, and Table 3, respectively.  The selected studies considered similar operational conditions about 

temperature, pH, time, and rotation, the values of these variables were, respectively, 27-30 °C, 6.7-7.0, 5-7 days, 

and 110-240 rpm. From these previous studies it is possible to relate the structure-dependence in media culture 

sources to macrolides productivity. 

 
Table 1 

Medium fermentation to produce tacrolimus. 

Authors Strain Carbon source (including amino 

acids and proteins) 

Nitrogen source Tacrolimus 

production 

(mg/L) 

[24] 

 

Streptomyces tsukubaensis 

 

Glycerol, corn starch, glucose, 

corn steep liquor, soluble starch, 

yeast extract 

 

 Corn steep liquor 

 

 

13.6 

[44] 

 

Streptomyces tsukubaensis 

 

Sacarose, glucose, cottonseed 

meal, corn steep liquor, glycerine, 

soluble starch 

Dryed yeast 14-23 

[31] Streptomyces tsukubaensis 

 

Glucose, maltose, malt extract, 

yeast extract, corn steep liquor, 

soy peptone, picolinic acid 

Corn steep liquor, soy 

peptone 

 

32.5 

[45] Streptomyces tsukubaensis 

 

 

 

Malt extract corn steep liquor, soy 

peptone, picolinic acid, Brazil nut 

oil 

Corn steep liquor, soy 

peptone 

47.4 

[27] Streptomyces tsukubaensis Glucose, maltose, malt extract, 

yeast extract, corn steep liquor, 

soy peptone, Brazil nut oil  

- 41.7 

 

[30] 

 

Streptomyces sp. 

 

 

 

Soy oil, soybean meal, 

L-lysine (NH4)2SO4 

 

 

 

135.6 

[46] 

Streptomyces sp. 

(MA 6858) ATCC n. 55098 

Glucose, dextrose, asparagine, 

soluble starch 

Dried yeast, corn steep 

liquor, asparagine 

10 - 37.8 

 

[47] 

 

Streptomyces sp. (Strains 

PSCS) FERM B027; MA 6858, 

ATCC n. 55098; Mutant P5C 

 

 

East extract, malt extract, glucose, 

glycerin, cottonseed oil, ground 

oil, soy oil, sunflower oil 

 

 

Cotton seed meal, corn 

steep liquor, dried yeast, 

feather meal, peanut 

powder, 

(NH4)2SO4 

 

 

 

 

150 - 250 

 

 

 

[25] Streptomyces tsukubaensis 

ZJU01 

Glycerol, soybean meal, soluble 

starch, glucose, soybean oil, L-

lysine 

(NH4)2SO4 

 

46.9 

 

[42] 
Streptomyces tsukubaensis 

D852 

Yeast extract, soybean meal, soy 

peptone 

Soypeptone 

 

177.8 

 

[48] 

Streptomyces tsukubaensis 

Glucose, yeast extract, malt 

extract, maltose, glucose, coconut 

oil 

Soypeptone 

 
- 
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Table 2 

Medium fermentation to produce sirolimus. 

Authors Strain Carbon source Nitrogen source 

Sirolimus 

production 

(mg/L) 

 

[49] 

Streptomyces 

hygroscopicus strain 

C9 

D-fructose, 

mannose 

(NH4)6MO7O24.4H20, 

L-arginine, 

L-histidine, L-aspartate 

134 

 

 

[50] 

 

Streptomyces 

hygroscopicus ATCC 

29253 

 

Fructose, 

mannose 

 

L-arginine, 

L-histidine, 

L-aspartate 

 

 

 

 

357  

 

 

 

[51] 

 

 

Streptomyces 

hygroscopicus FC904 

Glycerol, 

glucose, 

sucrose, 

glycine, 

soybean, 

oatmeal, 

dry yeast 

Peptone, 

Polypeptone, 

dry yeast, 

L-lysine, 

peptone, 

polypeptone 

 

 

 

139  

 

 

 

 
Table 3 

Medium fermentation to produce ascomycin. 

Authors Strain Carbon source Nitrogen source 

Ascomycin 

production 

(mg/L) 

 

 

[52] 

 

Streptomyces 

hygroscopicus 

KK 317 

 

 

Starch 

 

 

Soybeanflour 

 

 

100  

 

 

 

 

 

[53] 

Streptomyces 

hygroscopicussp. 

ATCC 53771 

Glucose, 

malt extract, 

soluble starch, 

yeast extract 

 

Yeast extract, 

N-Z-amine type A 

35% higher than 

previously published 

 

 

[54] S. hygroscopicus var. 

ascomyceticus FS35 

Soluble starch, 

dextrin, 

corn steep liquor, 

soybean oil, 

yeast powder 

(NH4)SO4, 

yeast powder, 

peptone, 

corn steep liquor, 

L-arginine 

 

626.30 

 

3. Results 
Analyzing Figures 4, 5 and 6 it is possible to observe fragments analogous to different precursors, 

containing nitrogen and carbon sources, are there proteins and amino acids, fatty acids, picolinic acid, shikimic 

acid, soluble starch, and others. Additionally, can be seen fragments analogous to methylmalonyl-CoA, 

malonyl-CoA, methoxymalonyl-CoA from metabolic pathways of these macrolides production. 
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*This fragment also is analogous a biosynthesis compound from metabolic pathways. 

Figure.4.Molecular structure of tacrolimus decomposed into fragments. 

 

 
*This fragment also is analogous a biosynthesis compound from from metabolic pathways. 

Figure. 5.Molecular structure of sirolimus decomposed into fragments. 
 

 
*This fragment also is analogous a biosynthesis compound from from metabolic pathways. 

Figure. 6 Molecular structure of ascomycin decomposed into fragments. 
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It is important to point that the identified precursors are present in tacrolimus, sirolimus and ascomycin 

structures. Some fragments show more similarities than others, as can be seen in Figure 5, in which the fatty 

acid fragment is analogous to linoleic acid in terms of unsaturated bonds.By inspection of Tables 1, 2 and 3, and 

similarly to the first level of contribution founds in the thermodynamic approach, the fragments were identified. 

In tacrolimus molecular structure (Fig. 4): 

Fragment (A) (Fig. 4) correspond to linoleic acid, the major fatty acid present in soybean oil, sunflower 

oil, cotton seed oil, and Brazil nut oil added in the composition of the media studied [25, 26, 27, 30, 45, 47]. 

Fragment (B) (Fig. 4) corresponds to starch added directly as glucose cited by [48], fructose, maltose, 

sucrose or other carbohydrates and cereal alcohols.  

Fragment (C) (Fig. 4) corresponds to the structure of amino acids, such as L-Lysine, and picolinic acid. 

The soy peptone is also present in the composition of the most productive media [25, 26, 27, 31, 42, 45]. [44] 

also presents the soy peptone, however, unlike the other studies it does not insert vegetable oil in the 

composition of the medium. The picolinic acid is present in the media studied by [31] and [45].  

Fragment (D) (Fig. 4) corresponds to the structure shikimic acid, although not identified neither 

mentioned directly in the composition of the medium, that may have contributed to the increase in productivity. 

This fragment appears in the molecular structures of the three macrolides studied.  

Analyzing Table 1,it is verified that with more complex medium compositions, such as the addition of 

picolinic acid or Brazil nut oil, productivity becomes more expressive. In this respect, the medium studied by 

[31] and [45] are similar. However, the addition of linoleic acid through Brazil nut oil may explain the higher 

productivity in [27] and [45] studies, 47.4 mg/L and 41.7 mg/L, respectively. Mutant strain of Streptomyces 

tsukubaensis were used (Table 1). Higher yields are associated with compositions in which vegetable oils rich in 

linoleic acid, L-lysine and soy peptone have been added. The study by [42] showed higher productivity, 177.8 

mg/L. It´s important to signalize that the interaction between the compounds L-lysine from the soybean meal 

combined with soy peptone can be associate to a second level of contribution. 

Adding precursors to the culture medium is an option to increase yield. The media composition is 

essential to define the productive process for the three macrolides studied. Enrichment of the fermentation 

medium with possible tacrolimus precursors as picolinic acid and pipecolic acid, or growth promoters as 

nicotinic acid and nicotinamide, also increased the tacrolimus production in Streptomyces tsukubaensis by three 

to seven times [31]. Pipecolic and picolinic acids, which are direct tacrolimus precursors, were the most 

effective promoters of tacrolimus production described by [31].  

Proline, leucine, threonine, and valine have been shown to be target amino acids for improving 

tacrolimus production. They significantly stimulate the yield of FK506 when added at 72 h of fermentation 

because they produce a significant increase in the FK506 precursors (acetyl-CoA and methylmalonyl-CoA) 

[55].  L-lysine is a precursor to L-pipecolic acid, which closes the macrolide ring of tacrolimus.  

Similar procedure fragmentation was applied to sirolimus andascomycin structures, Figures 5 and 6, 

respectively. Tables 2 and 3 were used to support the fragmentation scheme. The higher productivity to 

sirolimuswas related to [50], in which the fermentation medium is enriched with amino acids and soluble starch. 

Ascomycin presented the higher productivity to [54], a complete fermentation medium enriched with soluble 

starch, soybean oil and amino acids. 

In sirolimus molecular structure several competitive incorporation studies using precursors demonstrated 

that the heterocyclic ring originates from pipecolic acid, which is formed from lysine [56]. Rapamycin is a 

macrolide containing nitrogen, and the immediate precursor of the nitrogen-containing ring is pipecolic acid 

[56]. [57] in a preliminary study of nitrogen sources for the growth of Streptomyces hygroscopicus, found that 

the combination of the amino acids aspartate, arginine, and histidine are an effective mixture. The production of 

rapamycin is stimulated by L-lysine and decreased by L-phenylalanine and L-methionine.  

Xu et al. (2011) increased the quantity of malonyl-CoA, a key precursor to the synthesis of rapamycin. 

Among the primary metabolic targets, ppC and accA are responsible for the synthesis of precursors of 

rapamycin methyl malonyl-CoA and malonyl-CoA, respectively.  

Biosynthetic pathways may also support ascomicyn fragmentation. Ascomycin production, strain 

Streptomyces hygroscopicus var. ascomyceticusis studied well and previous scientific reports concluded that 

wild strain produced ascomycin in a very little amount; therefore, various yield improvement techniques are 

applied [19].  

A study conducted by [59] where three pathways (aminoacyl-tRNA biosynthesis; phenylalanine, 

tyrosine, and tryptophan biosynthesis; and pentose phosphate pathways) were studied, from which aromatic 

amino acid and pentose phosphate biosynthesis pathway were seen to be responsible for the synthesis of 

precursor molecule involved in ascomycin biosynthesis. 
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The selection of shikimic acid resistant strain Streptomyces hygroscopicus var. ascomyceticus and the 

addition of 3 g/L shikimic acid at 24 h increased the production of FK520 to 450 mg/L, which was 53.3% higher 

than in the initial strain FS35 [60]. In Streptomyces hygroscopicus var. ascomyceticus, FK520 is assembled from 

12 precursor molecules [61], with the majority being malonyl-CoA (2 molecules) and methylmalonylCoA (5 

molecules). Thus, the biosynthesis of malonyl-CoA and methylmalonyl-CoA is crucial to produce FK520.  

Based on these results, it is possible to affirm that the knowledge of the compound molecular structure 

and the decomposition into fragments can support the selection of more efficient carbon and nitrogen sources. 

 

4. Conclusions 
The year 2020 enters to history of humanity, exposing its fragility due to a virus, affecting people that 

remain invisible to public policies. In this case, it is essential to look for cientific and technological solutions to 

overcome the difficulty of those who depend on medicines, such as tacrolimus. Once this immunosuppressant is 

obtained by fermentation, it is essential to define the nutrient medium for the action of the microorganism, 

which, in the present study, refers to Streptomyces sp. The medium basic is defined by presence of carbon and 

nitrogen source. The strategy proposal in this paper is to analyze the tacrolimus, sirolimus and ascomycin 

molecular architecture and to find central fragments that contains carbon and nitrogen source, considering the 

analogy with thermodynamics group contribution approach. The knowledge of molecular architecture can be the 

auxiliar key to optimizing productivity by fragmentation of tacrolimus, sirolimus and ascomycin structure. This 

approach can enhance productivity of this important immunosuppressants and can be extended to other 

compounds produced from fermentative processes. 
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