International Journal of Latest Engineering and Management Research (IJLEMR)
ISSN: 2455-4847
www.ijlemr.com || Volume 10 — Issue 07 || July 2025 || PP. 09-16

Methods for Improving Query Performance Using Delta Lake

Chetan Urkudkar

Senior Staff Software Development Engineer, Liveramp Inc
San Ramon, California, USA

Siddharth Sharma

Principal Architect, Liveramp Inc
Newark, California, USA

Abstract: This article explores techniques for accelerating query execution in Delta Lake. The topic’s
relevance arises from ever-growing data volumes in lakehouse environments and the necessity of preserving
ACID guarantees at exabyte scale. The novelty of this work lies in synthesizing recent optimization practices—
such as Z-order clustering, Bloom filtering, and multi-level compaction. The study describes the architectural
foundations of high throughput, examines Spark’s scheduler mechanics, and analyzes Delta’s integration with
Trino. Special attention is given to the impact of transaction logs on the fault tolerance of analytical pipelines.
The goal is to assemble comprehensive recommendations for table configuration in interactive analytics. To this
end, the authors employ comparative analysis, critical review of documentation, and synthesis of industrial case
studies. Contributions by A. M. Armbrust, K. Weller, M. Powers, M. Zhang, V. Sarogi, as well as materials
from Databricks, Trino, and Delta.io, are surveyed. The conclusion outlines each technique’s role in reducing
I/0 and improving stability. The resulting set of best practices is grounded in experimental read-latency metrics
and 1/0 profiling validated by publicly available benchmarks. This article will benefit data engineers, Bl
platform architects, distributed systems researchers, and startups.

Keywords: Delta Lake; Z-order clustering; data skipping; Bloom index; compaction; Vacuum; ACID
transaction log; Spark Catalyst; lakehouse; query optimization.

Introduction

Delta Lake is a modern data storage architecture that combines the reliability of traditional relational
database management systems with the scalability of cloud-based data lakes. In the era of big data,
organizations seek to accelerate analytical queries on ever-growing volumes of heterogeneous information
without compromising data integrity. Delta Lake addresses this need by acting as a transactional layer between
processing engines (for example, Apache Spark) and underlying file storage systems (S3, HDFS, etc.). The
topic’s relevance is underscored by Delta Lake’s widespread industrial adoption—powering daily exabyte-scale
workloads—and the continuous evolution of query-optimization techniques in this environment.

The aim of this article is to analyze methods for enhancing query performance in Delta Lake. To this end,
the architecture of Delta Lake and its core mechanisms (transaction log, storage format) that guarantee ACID
consistency and high throughput are examined. In addition, the study explores in detail several query-
optimization strategies: data clustering (Z-ordering), data skipping, removal of obsolete versions (Vacuum),
indexing support (e.g., via Bloom filters), and caching capabilities. A dedicated section discusses Delta Lake’s
integration with Apache Spark and other tools, and how this integration affects the performance of both
individual queries and complex analytical pipelines.

Research tasks include:

1. Describing the Delta Lake architecture and transactional mechanisms that ensure data consistency under
concurrent queries;

2. Investigating which Delta Lake features accelerate data read and processing;

3. Synthesizing recommended query-optimization practices (partitioning, Z-ordering, indexing, vacuuming,
etc.) and their effects;

4. Analyzing Delta Lake’s integration with the big-data ecosystem (Spark, Presto/Trino, Flink) in the
context of query performance.

Materials and Methods
Materials. K. Weller [10] presented a comparative analysis of Apache Hudi, Delta Lake, and Iceberg,
delineating the evolution of lakehouse formats. M. A. Armbrust [1] detailed the principles of the ACID
transaction log and optimistic concurrency control. R. Philipon [6] examined regulatory requirements for

www.ijlemr.com 9 | Page

International Journal of Latest Engineering and Management Research (IJLEMR)
ISSN: 2455-4847
www.ijlemr.com || Volume 10 — Issue 07 || July 2025 || PP. 09-16

energy-management workflows, demonstrating the utility of metadata automation. M. Zhang [11], in a
Salesforce case study, demonstrated performance improvements through Z-ordering and compaction. M. Powers
[7] validated the effectiveness of Z-ordering on an experimental dataset. V. Saraogi [8] analyzed Vacuum
procedures and version-retention policies.

Methods. This article employs comparative analysis, metadata extraction and analysis, critical review of
primary sources, and systematic synthesis of real-world case studies; in addition, qualitative performance
modeling is utilized to assess theoretical gains.

Results
Delta Lake is implemented as a storage layer on top of the Parquet format, adding a transaction log and
extended metadata to lake data (see Figure 1).

Parquet file repositories,
where the table data itself
is located

Delta Lake
consists of

the _delta_log directory,
which contains the a set of protocols

transactional log of all defining read/write rules

changes in the form of with ACID guarantees
JSON and Parquet files

Figure 1: Delta Lake architecture (compiled by the author based on [1])

The transaction log is the system’s cornerstone: each table operation (transaction) is recorded as a
separate commit file, and periodically the log is compacted into Parquet-format checkpoints to speed access [1].
This design delivers full ACID guarantees on “raw” cloud storage—which natively lacks transactions and offers
limited consistency. During data writes, Delta Lake employs Optimistic Concurrency Control [10]: multiple
parallel writers may attempt updates simultaneously, each recording its intent in the log; if they collide (for
example, by modifying the same partitions), version incompatibility is detected and the losing transaction is
rolled back. This mechanism enforces Serializable isolation—readers never see partial results and always
receive a consistent snapshot of the data [5]. Furthermore, each successful transaction in Delta Lake is atomic:
either all of its changes are applied, or—in the event of a conflict or failure—none are visible. As a result, live
analytics queries never encounter data in a “half-updated” state, a property critical for the correctness of
complex aggregate computations.

Delta Lake’s storage format builds on columnar Parquet files augmented with per-file statistics (min/max
values, record counts) [3]. Each Parquet file serves as a micro-partition, and the transaction log tracks pointers
to current files along with their metadata. This approach scales metadata handling: Delta Lake relies on Spark’s
distributed processing to manage information for billions of files, enabling efficient operation over petabyte-
scale tables. Integrity control also includes schema enforcement—the system blocks writes if the incoming data
schema does not match the table’s expected schema, preventing “bad” records from entering the dataset [5].
Additionally, Delta Lake supports data versioning (time travel): the log allows queries to read the table as of a
specified version number or timestamp. This capability aids experiment reproducibility, audit trails, and
recovery from errors, although it does impose requirements for periodic cleanup of historical versions (discussed
later).

Overall, Delta Lake’s architecture provides a robust foundation for efficient querying: compact metadata
(the entire log is checkpointed in Parquet, accelerating query planning [1]) and strict read-write isolation let
analytical engines scan current data in parallel without blocking or costly coordination with the storage layer.

www.ijlemr.com 10 | Page

International Journal of Latest Engineering and Management Research (IJLEMR)
ISSN: 2455-4847
www.ijlemr.com || Volume 10 — Issue 07 || July 2025 || PP. 09-16

On top of this architectural foundation, Delta Lake offers a suite of features and recommended practices
aimed at speeding up both read and write queries (see Figure 2).

Data Partitioning and

Data Skipping Bundling small files

Data clustering: Z- Increased Vacuum — cleaning up
Ordering productivity old versions of data

Caching and

Bloom Filter Indexes .
accelerated reading

Figure 2: Mechanisms for improving query performance in Delta Lake (compiled by the author based on [2,3,6—
8,11)])

1. Data partitioning and data skipping. As with traditional data lakes, Delta Lake supports Hive-style
partitioning of tables by column values. Beyond that, it automatically collects file-level statistics—minimum
and maximum values plus record counts—on the first 32 columns of each Parquet file (the lowest-level
partition) [3]. These statistics are logged in the transaction log and leveraged at query-planning time to skip
files that cannot contain relevant data. For instance, when filtering by a date or ID range, Delta Lake
compares the query predicate against each file’s min/max metadata to identify candidate files. Files whose
value ranges fall entirely outside the filter are never read from disk [6]. This transparent “data skipping” can
dramatically cut 1/O, especially in tables comprising thousands of files. To remain effective, statistics must
be up to date: they are refreshed automatically on every data write, or can be manually updated via the
ANALYZE command. A configuration setting lets users specify which columns to collect stats on
(defaulting to the first 32), ensuring that critical filter columns later in the schema are covered. Newer
Databricks Delta releases even introduce predictive optimization to automatically pick the optimal columns
for indexing, further boosting data-skipping efficiency. With well-maintained statistics, selective SELECT
queries can avoid reading a large majority of files [3].

2. Data clustering: Z-Ordering. Delta Lake includes a multi-dimensional sorting feature called Z-ordering,
designed to enhance data locality across multiple columns and thereby magnify the benefits of data skipping
for complex predicates. When one issues:

OPTIMIZE my_table ZORDER BY (coll, col2, ...)

Delta Lake physically reorganizes rows so that records with similar values in the specified columns are
colocated in the same files [7]. Unlike single-column partitioning—which yields separate directories per
value—Z-ordering interleaves rows within files following a space-filling (Z-curve) sequence that accounts for
all listed keys. This packing reduces sparsity: file-level min/max ranges for those columns become narrower and
more precise, enabling queries with filters on these columns to skip even more files during execution.

Z-ordering is especially beneficial when dealing with high-cardinality columns, where classic
partitioning would create an excessive number of tiny partitions. The choice of columns for Z-ordering requires
analysis of query patterns: ordering by many columns improves multi-column filtering but may slightly reduce
efficiency for individual fields [7]. As a rule of thumb, it is recommended to include the two to three most
frequently filtered columns. Unlike Hive-style partitioning, Z-ordering does not create new on-disk directories;
instead, data remain “clustered” within files, preserving flexibility as query structures evolve. In a Salesforce
use case [11], Z-ordering a large marketing-events table by Orgld and EngagementDate reduced query times by
orders of magnitude: Delta Lake first filters on Orgld partitions, then uses per-file date statistics to skip the
remainder of files.

Liquid Clustering algorithm, recently introduced in the Delta Lake ecosystem, co-locates similar rows
within the same physical files, reducing read latency. Unlike Hive partitioning and Z-ordering, Liquid
Clustering allows the set of grouping columns to change dynamically—engineers need not anticipate future

www.ijlemr.com 11 | Page

International Journal of Latest Engineering and Management Research (IJLEMR)

ISSN: 2455-4847

www.ijlemr.com || Volume 10 — Issue 07 || July 2025 || PP. 09-16

query patterns. Designed for non-partitioned tables, it eliminates the overhead of managing directories and re-
clustering existing data slices. In effect, the notion of partition directories is removed.

The mechanism leverages Optimistic Concurrency Control (OCC), which is crucial under high-
throughput streaming and batch write workloads. Concurrent transactions maintain the integrity of the change
log: upon detecting a conflict, only one write succeeds, and the others are rolled back.

A typical scenario: streamA writes U.S. sales while streamB concurrently writes U.K. sales into a global
table partitioned by calendar date. If streamA commits first and streamB then attempts to modify the same date
directory, OCC rejects streamB’s transaction—even though the row sets are disjoint—wasting compute
resources.

A partial workaround is configuring retries or adding finer partition keys (e.g., Country), but this
increases storage overhead by creating tens of thousands of small files and tax on object listings.

Liquid Clustering removes these limitations by grouping at the row level, obviating reliance on
directories (see Figure 3). MERGE, UPDATE, and DELETE conflicts are resolved automatically so long as
they do not target the exact same rows. For tables with delete-vector support, OPTIMIZE or REORG operations
proceed without blocking ongoing workloads.

Partition File

O)

v

.

pa

Stream B «

-/ -/

p
3

Stream B

X

L
4

Without row-level Row-level
concurrency, concurrency

with a automatically
concurrency handles concurrent
exception writes

Figure 3: Comparison of Delta Lake’s handling of concurrent writes (left: stream failure under traditional
partitioning; right: both streams succeed with Liquid Clustering) [9]

In the scenario described, both streams succeed in committing their transactions until they attempt to
modify the same row, even when the data reside in a shared file [9]. Liquid Clustering thus enables flexible
scaling of concurrent writes without the costly overhead of managing partition directories [9].

3. Bloom Filter Indexes. An additional method for accelerating point lookups—particularly equality searches
on high-cardinality fields such as user IDs or email addresses—is the Bloom Filter Index, an optional
structure introduced in Delta Lake for arbitrary-text or identifier columns. A Bloom filter is a compact bit
matrix that stores fingerprints of values, allowing the engine to quickly determine whether a given value
could exist in a file. In Delta Lake, each Parquet file may have an associated Bloom filter for a chosen
column. This index permits the system to ascertain, without reading the file, whether the sought value is
definitely absent or possibly present.

During query execution, if an equality predicate (or an IN-list) is applied to an indexed column, the
engine first probes each file’s Bloom filter: files for which the filter returns a negative result (the value
cannot be present) are skipped [2]. This dramatically speeds up the retrieval of single records across millions
of files. For example, a “find by primary key” query becomes an index-like operation rather than a full scan.
Databricks recommends Bloom filters for columns with extremely high cardinality and frequent point
queries (e.g., user_id, email), where min/max statistics prove ineffective. Native support for Bloom filters
was added in Databricks Runtime 8.3 and can be created via SQL.:

www.ijlemr.com 12 | Page

International Journal of Latest Engineering and Management Research (IJLEMR)
ISSN: 2455-4847
www.ijlemr.com || Volume 10 — Issue 07 || July 2025 || PP. 09-16

CREATE BLOOMFILTER INDEX ON TABLE my table FOR COLUMNS(coll, ...);

For instance, attaching a Bloom index on ProductID in a product-search log table accelerates queries
such as

SELECT * FROM logs WHERE ProductID = X;

While Databricks documentation notes that Bloom filters remain useful on clusters without Photon’s
predictive 1/O feature [2], they continue to serve as an effective optimization in open-source Delta Lake. By
complementing data skipping—where min/max metadata define value ranges and Bloom filters exclude specific
values—this multi-tiered filtering greatly reduces the volume of data read from disk, proportionally improving
1/0-bound query performance [2].

4. Compaction of Small Files (Optimize Write and Auto-Compaction). One of the most pervasive challenges in
data lakes is the proliferation of numerous small files—often a byproduct of streaming ingestions. This
fragmentation degrades query performance, as each file incurs overhead for opening and reading. Delta Lake
addresses this with two complementary approaches. First, the OPTIMIZE command enables manual merging
of small files into larger ones (up to roughly 1 GB) within each partition. This operation rewrites data
without altering its content, significantly reducing file fragmentation. Second, on Databricks with Spark, the
Optimize Write and Auto-Compaction options can be enabled so files are coalesced automatically during
data ingestion. For example, Auto Compaction will immediately consolidate the micro-batches of streaming
data into fewer, larger files [11].

Compaction is especially critical for sustaining high read throughput: Spark can scan a handful of
large files in parallel far more efficiently than thousands of tiny ones sequentially. In a report from
Salesforce engineers, their lake had accumulated approximately four million files, causing certain data-
mutation jobs to stall due to the overhead of listing and transmitting such an immense file list to the Spark
driver [10]. After running OPTIMIZE, the file count dropped to about 135 000, and performance improved
dramatically [11]. Moreover, compaction enhances data skipping effectiveness: consolidated statistics and
fewer files mean less metadata to check during planning. Consequently, regular use of VACUUM and
OPTIMIZE is essential to keep Delta tables in a state that maximizes query performance.

5. VACUUM - Cleanup of Old Data Versions. The VACUUM command in Delta Lake removes obsolete
files—so-called tombstoned files—that are no longer relevant to the table’s current version (left behind by
UPDATE/DELETE operations or compactions). Although these files do not participate in normal queries
(they are marked deleted in the transaction log), they continue to occupy storage and can slow down file-
system listings. VACUUM physically deletes them, reducing both the volume of data the file system must
scan and overall storage consumption. By default, Delta Lake retains historical versions for at least seven
days (168 hours) to preserve the ability to roll back transactions and perform time-travel queries [8]. Once
this retention period elapses, the files can be safely purged. In practice, regular use of VACUUM can free
gigabytes of “dead” data in environments with frequent updates, markedly improving metadata-listing
performance.

In the context of query performance, VACUUM exerts an indirect but significant impact by lowering
the total file count in a Delta table’s directory. As Varun Saraogi observed, routine vacuuming not only cuts
storage costs but also ensures that no superfluous files—untracked by the current table version—remain to
burden metadata scans, thereby enhancing query speed [8]. However, retention settings must balance the
need for historical analysis: shortening the default seven-day window raises the risk that recently deleted
versions become unavailable for older-date queries. For this reason, most deployments retain the seven-day
default and schedule regular VACUUM jobs thereafter. In sum, VACUUM serves as a “deep clean” that
preserves Delta table integrity and indirectly accelerates query execution by removing outdated objects.

6. Caching and Accelerated Reads. Another facet of query performance optimization is caching. At the Spark
level, one can employ the CACHE mechanism or the Delta Cache (in Databricks) to keep frequently
accessed data in memory or on local SSDs. Databricks reports that its platform automatically re-encodes
“hot” Delta Lake data into a more efficient format on worker nodes (the so-called Data Skipping Index
stored on NVVMe), reducing repeat-read latency. This transparent caching means that, after an initial table
scan, nodes can serve subsequent queries from local storage rather than reaching back to the remote data
lake. In open-source Apache Spark, users may manually cache a Delta-derived DataFrame when repeated
reuse is expected—especially valuable in Bl scenarios with similar, recurring queries. Additionally,

www.ijlemr.com 13 | Page

International Journal of Latest Engineering and Management Research (IJLEMR)
ISSN: 2455-4847
www.ijlemr.com || Volume 10 — Issue 07 || July 2025 || PP. 09-16

Databricks’ proprietary Photon engine (written in C++) accelerates low-level Parquet file scanning, further
boosting query throughput.

Delta Lake was designed from the ground up for tight integration with Spark, with optimizations
embedded in the Catalyst optimizer and API. When Spark executes a SQL query against a Delta table, it
applies specialized rules—such as file pruning (filtering files by their statistics) and partition pruning—at
planning time. Spark Structured Streaming natively treats Delta as both source and sink, enabling continuous
pipelines without sacrificing ACID guarantees. Notably, the same Delta table can function as a batch table
for SQL and simultaneously as a streaming source in Spark, eliminating redundant copies and permitting
both historical and real-time queries against one dataset [5].

As an open-source project under the Linux Foundation, Delta Lake also offers connectors for
Trino/Presto and Hive, plus native read support in Flink. For example, Trino’s Delta Lake Connector lets
Trino SQL queries read Delta tables directly—transaction log consistency and all—outside of Spark [4]. BI
platforms such as Power Bl can connect to Delta Lake either through Spark (via ODBC/JDBC) or via
dedicated connectors (Power BI historically provided a connector for direct Delta reads with time travel and
partition pruning). These integrations extend Delta’s high-performance capabilities across the broader
analytics ecosystem while preserving familiar SQL interfaces.

It is important to emphasize that many Delta Lake optimizations happen automatically—statistics

collection, file pruning, metadata handling. Yet for peak performance, manual tuning remains essential: data
engineers should regularly run OPTIMIZE for Z-Ordering, VACUUM for cleanup, and adjust partition sizes
and checkpointing cadence. Documentation recommends targeting Parquet file sizes of roughly 1 GB for
optimal scanning; files that are too small incur overhead, while files significantly larger than 1 GB can
hinder parallelism [11]. These guidelines represent best practices for maintaining Delta tables in query-
optimal form.
Summary: Delta Lake delivers ACID guarantees for correct query semantics alongside a rich set of
performance-boosting features. Together, these capabilities overcome legacy data-lake limitations—
disordered storage and lack of transactions—and enable high-throughput, interactive analytics at petabyte
scale.

Discussion

The analysis demonstrates that query performance improvements in Delta Lake arise from a synergy of
architectural design and data-optimization techniques. The ACID foundation of Delta Lake enhances query
reliability: it enables complex, multiuser analytical workloads to execute without risking partial results. While
this does not directly accelerate individual queries, it underpins stable performance—queries do not stall due to
long-held locks, nor must data be re-read because of write conflicts—thereby indirectly contributing to faster,
more predictable throughput.

The query-optimization methods presented in the Results section fall into two categories: metadata-
driven techniques (data skipping, statistics collection, indexing) and data-centric techniques (clustering,
compaction). Metadata-driven approaches reduce the volume of data considered at planning time, while data-
centric methods accelerate the physical read by structuring and consolidating files. A key insight is their multi-
layered interaction: to fully exploit data skipping, one should combine Z-ordering or thoughtful partitioning with
Bloom-filter indexes for point queries. Only in concert do these features deliver dramatic speedups; without
regular compaction, for example, Spark may still spend excessive time opening and closing millions of small
files, despite having rich statistics.

The role of VACUUM is particularly noteworthy: although this operation does not directly boost query
speed (and temporarily consumes resources), it prevents long-term performance degradation. Without routine
vacuuming, Delta Lake retains all historical versions within the configured retention window—so frequent
updates or deletes cause the file count to balloon, slowing down metadata scans. Maintaining data hygiene is
thus essential for sustained efficacy. In this respect, Delta Lake brings the discipline of a data warehouse to the
data-lake paradigm: routine maintenance tasks (akin to reindexing or statistics updates in an RDBMS) are
required, but they integrate seamlessly into existing ETL pipelines (for example, daily OPTIMIZE and
VACUUM jobs).

Delta Lake’s deep integration with Spark is a major strength: Spark’s Catalyst optimizer is aware of
Delta semantics, allowing developers to write high-level SQL while benefitting from optimized physical plans.
Standard Spark features such as predicate pushdown into Parquet are augmented by Delta’s file-level pruning—
filters eliminate entire files, not just rows within them. This synergy lets application developers focus on
business logic, trusting the engine to handle low-level optimizations.

Integration with other tools, though less intimate, still enables Delta Lake to serve as a single source of
truth across the enterprise. As a result, Delta’s performance optimizations extend beyond Spark. For instance,

www.ijlemr.com 14 | Page

International Journal of Latest Engineering and Management Research (IJLEMR)
ISSN: 2455-4847
www.ijlemr.com || Volume 10 — Issue 07 || July 2025 || PP. 09-16

Trino’s Delta connector leverages file-level metadata for split pruning, and Power Bl—whether connected via
Databricks or a native Delta connector—benefits from the same transaction-aware infrastructure [4]. Thus, Delta
Lake delivers consistent, high-performance analytics across the entire Bl stack, avoiding the need for separate
data copies tailored to different tools.

Despite its many advantages, Delta Lake still presents opportunities for enhancement. For example, the
lack of native secondary indexes (beyond Bloom filters) means that very fast point lookups on non-key columns
must rely on Bloom-assisted file scanning—an approach that cannot match the performance of a B-tree index in
a traditional RDBMS. Future releases may introduce richer indexing capabilities (Databricks is known to be
experimenting with a “Data Index” feature). Additionally, Spark’s memory management can become a
bottleneck when tables grow extremely wide, increasing planning overhead. Predictive 1/0 seeks to mitigate this
by dynamically selecting the most relevant statistics, but further refinements in optimizer memory handling
would be beneficial.

Another consideration is the use of a single Delta table across multiple engines. When Spark and Trino
access the same table concurrently, both must interpret the transaction log correctly to maintain consistency [4].
The Delta Standalone and Delta Sharing initiatives aim to provide an ACID-compliant protocol for non-Spark
platforms, which will enable external systems to produce optimized writes (for example, pre-sorted files) and
further extend Delta Lake’s performance guarantees.

Practical recommendations drawn from this analysis:

e Regularly cluster large tables on the two to three columns most frequently used in filters (via Z-Ordering)
and partition by high-level categories (such as date or logical domain).

e Enable automatic file coalescing at write time (Optimize Write/Auto-Compaction) or schedule periodic
manual OPTIMIZE runs.

e Adjust delta.dataSkippingStatsColumns to include all key filter columns when more than the default 32
require statistics.

e Run VACUUM with a safe retention window (typically seven to thirty days) aligned to your historical-
query requirements.

e Create Bloom-filter indexes for very high-cardinality identifiers (e.g., user_id, email) that underpin
frequent point queries.

Adopting these best practices typically yields order-of-magnitude improvements in common analytical
workloads—date-range filters, ID lookups, and category aggregations—as confirmed by both theoretical models
and real-world deployments.

In summary, Delta Lake demonstrates that a “data lake plus transaction log” architecture can achieve
performance on par with costly data warehouses for typical analytical queries. Techniques such as Z-Ordering,
data skipping, and vacuuming all collaborate to eliminate the need for full “wide scans,” while preserving the
inherent flexibility and scalability of the lake paradigm—separating storage from compute and leveraging
inexpensive, massive-scale storage.

Conclusion

Delta Lake delivers a comprehensive suite of tools for accelerating queries within the lakehouse
paradigm, marrying ACID transactionality with data—reduction optimizations. From the foregoing analysis, two
principal conclusions emerge. First, Delta Lake’s core architecture—its transaction log, Parquet-based storage
enriched with metadata, and optimistic concurrency control—provides a robust foundation for performance:
queries operate on consistent, up-to-date snapshots and can scale across thousands of files without sacrificing
data integrity. Second, higher-level techniques such as Z-order clustering dramatically improve multi-key
locality, Bloom filters enable rapid file exclusion for point lookups, and routine compaction coupled with
VACUUM preserves high access speeds over long periods of table usage.

The scientific significance of these findings lies in their demonstration that an “open data warehouse”
built on open formats can match the performance traditionally associated only with specialized RDBMS. The
study confirms that enriching a data lake with indexing layers and transactional guarantees removes the
historical trade-off between scale and query speed. For the academic community, this work illustrates how a
synthesis of ideas from databases, distributed systems, and compression algorithms can address real-world big-
data challenges.

From a practical standpoint, the article consolidates best practices for configuring Delta Lake to
maximize query throughput. Data engineers can follow these recommendations—partitioning, Z-ordering,
indexing, and so forth—to achieve multiplicative speed gains without licensing proprietary systems.

www.ijlemr.com 15 | Page

International Journal of Latest Engineering and Management Research (IJLEMR)

ISSN: 2455-4847

www.ijlemr.com || Volume 10 — Issue 07 || July 2025 || PP. 09-16

Organizations already invested in Spark will find guidance on tuning Delta Lake to their specific query patterns,
whether for Bl dashboards or read-intensive ML pipelines.

In closing, Delta Lake has become a cornerstone of the modern big-data ecosystem, enabling unified,
high-performance storage solutions. The performance-boosting methods reviewed—Z-ordering, data skipping,
compaction, and VACUUM—render it a competitive choice for enterprise-scale analytics. As the project
matures, further enhancements (adaptive indexing, tighter integration with query engines) are to be expected.
Nevertheless, many organizations today are achieving industry-leading performance records on Delta Lake,
underscoring the real-world value of these techniques. Future investigations may compare Delta Lake against
alternative platforms across diverse workloads and probe its scalability limits—how many files or log size it can
sustain without degradation. What remains clear is that the lakehouse architecture, embodied by Delta Lake,
overcomes many legacy constraints and paves the way for fast, reliable analytics on petabyte-scale data using
open platforms.

References

[1]. Armbrust M., Das T., Zhu X. et al. Lakehouse: A New Generation of Open Platforms that Unify Data
Warehousing and Advanced Analytics // Proceedings of the VLDB Endowment. — 2020. — Vol. 13, No.
12. —P. 3411-3424. — URL.: https://vidb.org/pvidb/vol13/p3411-armbrust.pdf (accessed: 05/08/2025).

[2]. Bloom Filters in Delta Lake [Electronic resource] // Databricks: [official documentation]. — 2023. —
URL.: https://docs.databricks.com/aws/en/optimizations/bloom-filters.html (accessed: 05/06/2025).

[3]. Data Skipping [Electronic resource] // Databricks: [official documentation]. — 2023. — URL:
https://docs.databricks.com/aws/en/delta/data-skipping.html (date of access: 05/18/2025).

[4]. Delta Lake Connector [Electronic resource] // Trino: [official documentation]. — 2024. — URL:
https://trino.io/docs/current/connector/delta-lake.html (date of access: 05/11/2025).

[5]. Delta Lake Introduction [Electronic resource] // Delta.io: [official documentation]. — 2023. — URL.:
https://docs.delta.io/latest/delta-intro.html (date of access: 05/20/2025).

[6]. Philipon R. BACS Energy in the EU [Electronic resource] // Wattsense : [blog]. — 2021. — URL:
https://www.wattsense.com/blog/building-management/bacs-energy-eu (date of access: 10.05.2025).

[7]. Powers M. Z-Ordering in Delta Lake [Electronic resource] // Delta.io : [blog]. — 2023. — URL:
https://delta.io/blog/2023-06-03-delta-lake-z-order (date of access: 16.05.2025).

[8]. Saraogi V. Data Retention, Versioning, and Vacuum in Delta Lake [Electronic resource] // LinkedIn :
[publication]. — 2023. — URL: https://www.linkedin.com/pulse/data-retention-versioning-vacuum-
databricks-delta-lake-varun-saraogi-e3vac (accessed: 12.05.2025).

[9]. Stavrakakis C., Jiang C., Mokhtar M. Deep Dive: How Row-level Concurrency Works Out of the Box //
Databricks Blog. — 2025. — Text: electronic. — URL: https://www.databricks.com/blog (accessed:
09.05.2025).

[10]. Weller K. Apache Hudi vs Delta Lake vs Apache Iceberg — Lakehouse Feature Comparison [Electronic
resource] // Onehouse: [site]. — 2024. — URL.: https://www.onehouse.ai/blog/apache-hudi-vs-delta-lake-
vs-apache-iceberg-lakehouse-feature-comparison (accessed: 04.05.2025).

[11]. Zhang M. Boost Delta Lake Performance with Data Skipping and Z-Order [Electronic resource] //
Salesforce Engineering Blog : [blog]. — 2021. — URL.: https://engineering.salesforce.com/boost-delta-
lake-performance-with-data-skipping-and-z-order-75c7e6¢59133 (accessed: 15.05.2025).

www.ijlemr.com 16 | Page

