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ABSTRACT: Now these days load flow is a very important and fundamental tool for the analysis of any 

power systems and in the operations as well as planning stages. Certain applications, particularly in distribution 

automation and optimization of a power system, require repeated load flow solutions. In these applications it is 

very important to solve the load flow problem as efficiently as possible. Since the invention and widespread use 

of digital computers and many methods for solving the load flow problem have been developed. Most of the 

methods have ―grown up‖ around transmission systems and, over the years, variations of the Newton method 

have become the most widely used. Some of the methods based on the general meshed topology of a typical 

transmission system are also applicable to distribution systems which typically have a radial or tree structure. 

Specifically, we will compare the standard Newton Method, and the continuous power flow method. 
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I. INTRODUCTION 
LOAD flow study also known as power flow study, is an important tool involving numerical analysis 

applied to a power system. A power-flow study usually uses simplified notation such as a one-line diagram and 

per-unit system, and focuses on various forms of AC power (i.e.: voltages, voltage angles, real power and 

reactive power). Load-flow studies are performed to determine the steady-state operation of an electric power 

system. It calculates the voltage drop on each feeder, the voltage at each bus, and the power flow in all branch 

and feeder circuits. Determine if system voltages remain within specified limits under various contingency 

conditions, and whether equipment such as transformers and conductors are overloaded. It is used to identify the 

need for additional generation, capacitive, or inductive support, or the placement of capacitors and/or reactors to 

maintain system voltages within specified limits. Losses in each branch and total system power losses are also 

calculated. It is necessary for planning, economic scheduling, and control of an existing system as well as 

planning its future expansion. 

In recent years, the increase in peak load demand and power transfers between utilities has elevated 

concerns about system voltage security. Voltage collapse has been deemed responsible for several major 

disturbances  and significant research efforts are under way in an effort to further understand voltage 

phenomena . A large portion of this research is concentrated on the steady state aspects of voltage stability. 

Indeed, numerous authors have proposed voltage stability indexes based upon some type of power flow analysis. 

A particular difficulty being encountered in such research is that the Jacobian of a Newton-Raphson power flow 

becomes singular at the steady state voltage stability limit. In fact, this stability limit, also called the critical 

point, is often defined as the point where the power flow Jacobian is singular. As a consequence, attempts at 

power flow solutions near the critical point are prone to divergence and error. For this reason, double precision 

computation and anti-divergence algorithms such as the one found in have been used in attempts to overcome 

the numerical instability. 

 In continuous power flow, Jacobian can be avoided by slightly reformulating the power flow equations 

and applying a locally parameterized continuation technique. During the resulting ―continuous power flow‖, the 

reformulated set of equations remains well-conditioned so that divergence and error due to a singular Jacobian 

are not encountered. As a result, single precision computations can be used to obtain power flow solutions at 

and near the critical point. 

 The continuous algorithm used in this work is used to find a path of equilibrium solutions of a set of 

nonlinear equations. One particular application of these algorithms has been in civil engineering where the 

equilibrium solutions of the equations describing a structure have been studied under a change in a load intensity 

parameter. 
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II. POWER FLOW PROBLEM FORMULATION 
The goal of a power flow study is to obtain complete voltage angle and magnitude information for each 

bus in a power system for specified load and generator real power and voltage conditions. Once this information 

is known, real and reactive power flow on each branch as well as generator reactive power output can be 

analytically determined.  

           The solution to the power flow problem begins with identifying the known and unknown variables in 

the system. The known and unknown variables are dependent on the type of bus. A bus without any generators 

connected to it is called a Load Bus. A bus with at least one generator connected to it is called a Generator Bus. 

The exception is one arbitrarily-selected bus that has a generator. This bus is referred to as the slack bus.  

            In the power flow problem, if the real power and reactive power at each Load Bus are known. For 

this reason, Load Buses are also known as PQ Buses. For Generator Buses, it is assumed that the real power 

generated  P
G
  and the voltage magnitude |V| is known. For the Slack Bus, it is assumed that the voltage 

magnitude |V| and voltage phase Θ are known. Therefore, for each Load Bus, the voltage magnitude and angle 

are unknown and must be solved for; for each Generator Bus, the voltage angle must be solved for; there are no 

variables that must be solved for the Slack Bus. In a system with N buses and R generators, there are then  

 

                                                                  
 

In order to solve for the above equation, the possible equations to use are power balance equations, which can be 

written for real and reactive power for each bus. 

The real power balance equation is  

Where,  Pi is the net power injected at bus i ,  

Gik is the real part of the element in the bus admittance matrix,  

               Ybus corresponding to the ith row and kth column,  

               Bik  is the imaginary part of the element. 

 

                                                                
 The reactive power balance equation is:    

Where, Qi is the net reactive power injected at bus i , 

       and  

 Equations included are the real and reactive power balance equations for each Load Bus and the real 

power balance equation for each Generator Bus. Only the real power balance equation is written for a Generator 

Bus because the net reactive power injected is not assumed to be known and therefore including the reactive 

power balance equation would result in an additional unknown variable. For similar reasons, there are no 

equations written for the Slack Bus. 

 

                                       
 

                             Fig1:power system analysis 
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III. POWER FLOW EQUATION 

                                                         
           Fig 2- A typical bus of the power system 

 

Applying KCL to this bus results in; 

 

 
  

Representing eq. (1) in summation form; 

                                              

The complex power at its ith bus is; 

                                      
This is for reactive power. 

                                
This is for active power. 

 

Substituting for Ii in (2) yields; 

 

                                    
Equation (5) is an algebraic non linear equation which must be solved by iterative techniques. 

 

IV. NEWTON RAPHSON METHOD 
 If  you've ever tried to find a root of a complicated function algebraically, you may have had some 

difficulty. Using some basic concepts of calculus, we have ways of numerically evaluating roots of complicated 

functions. Commonly, we use the Newton-Raphson method. This iterative process follows a set guideline to 

approximate one root, considering the function, its derivative, and an initial x-value.  

 

Power flow equations formulated in polar form. For the sys-tem in Fig 2, Eqn (2) can be written in 

terms of bus admittance matrix as; 

 

 

 

                                             (6) 

Expressing in polar form; 
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                          (7) 

Substituting for Ii from Eqn (15) in Eqn (4); 

 

   (8) 

Separating the real and imaginary parts; 

          (9) 

(10) 

𝜹i is phase angle. 

Expanding Eqn (9) & (10) in Taylor's series about the initial estimate neglecting high order terms we 

get; 

 

 
 

The Jacobian matrix gives the linearized relationship between small changes in Δδ
i

(k) 

and voltage 

magnitude Δ[V
i

k

] with the small changes in real and reactive power ΔP
i

(k) 

and ΔQ
i

(k) . 

 

                                     (11) 

 

The diagonal and the off-diagonal elements of J1 are, 

 

        (12) 

         (13) 

 

Similarly we can find the diagonal and off-diagonal elements of J2,J3 and J4;  

 

The terms ΔPi
(k) 

and ΔQ
i

(k) 

are the difference between the scheduled and calculated values, known as 

the power residuals. 

 

                                      (14) 
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                                (15) 

Continue until scheduled errors ΔP
i

(k) 

and ΔQ
i

(k) 

for all load buses are within a specified tolerance. 

 

4.1 Figures  

 

 
               Fig 3- Flow chart of Newton Raphson Method 

 

V. CONTINUOUS POWER FLOW 

The Jacobian matrix of power flow equations becomes singular at the voltage stability limit. 

Continuous power flow overcomes this problem. Continuous power flow finds successive load flow solutions 

according to a load scenario. 

It consists of prediction and correction steps. From a known base solution, a tangent predictor is used 

so as to estimate next solution for a specified pattern of load increase. The corrector step then determines the 

exact solution using Newton-Raphson technique employed by a conventional power flow. After that a new 

prediction is made for a specified increase in load based upon the new tangent vector. Then corrector step is 

applied. This process goes until critical point is reached. The critical point is the point where the tangent vector 

is zero. The illustration of predictor-corrector scheme is depicted in Figure 4. 
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      Fig 4: Illustration of prediction-correction steps 

 

5. 1 Mathematical Reformulation 
Injected powers can be written for the i

th
 bus of an n-bus system as follows: 

 

        (16)           

        (17) 

 

where the subscripts G and D denote generation and load demand respectively on the related bus. 

 

In order to simulate a load change, a load parameter W is inserted into demand powers PDiand QDi.       

                         (18) 

 

PDio and QDio are original load demands on i
th

 bus whereas P∆base and Q∆base are given quantities of 

powers chosen to scale appropriately. After substituting new demand powers in Equation 3.4 to Equation 3.3, 

new set of equations can be represented as: 

                                               (19) 

 

     where 𝜃denotes the vector of bus voltage angles and V denotes the vector of bus voltage magnitudes.  

 

 

5.2 Prediction Step 

In this step, a linear approximation is used by taking an appropriately sized step in a direction tangent 

to the solution path. Therefore, the derivative of both sides of Equation 19 is taken. 

 

                            (20) 
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In order to solve Equation 20, one more equation is needed since an unknown variable W is added to 

load flow equations. This can be satisfied by setting one of the tangent vector components to +1 or -1 which is 

also called continuation parameter. Setting one of the tangent vector components +1 or -1 imposes a non-zero 

value on the tangent vector and makes Jacobian nonsingular at the critical point. As a result Equation 20 

becomes: 

                        (21) 

 

where ek is the appropriate row vector with all elements equal to zero except the k
th 

element equals 1. 

At first step is chosen as the continuation parameter. As the process continues, the state variable with the 

greatest rate of change is selected as continuation parameter due to nature of parameterization. By solving 

Equation 3.7, the tangent vector can be found. Then, the prediction can be made as follows: 

 

                           (22) 

 

where the subscript ―p+1‖ denotes the next predicted solution. The step size 𝜎 is chosen so that the 

predicted solution is within the radius of convergence of the corrector. If it is not satisfied, a smaller step size is 

chosen. 

 

5.3Correction Step 

 

In correction step, the predicted solution is corrected by using local parameterization. The original set 

of equation is increased by one equation that specifies the value of state variable chosen and it results in: 

                                  (23) 

 

where xk is the state variable chosen as continuation parameter and e is the predicted value of this state 

variable. Equation 23 can be solved by using a slightly modified Newton-Raphson power flow method. 

 

 
Fig 5: Flow chart for continuation power flow 
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VI. RESULT 
Comparison between Newton Raphson and continuous power fllow 

 

 
                        Fig 6:Graph between voltage Vs buses 

 

VII. CONCLUSIONS 
The Newton-Raphson method fails to converge near critical operation point. At the loadability limit, 

Jacobian  matrix of power flow equations become singular as the slope of the curve tends to infinite.  

Continuous method overcomes the singularity problem by adopting a predictor-corrector scheme that 

finds successive load flow solutions. 
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